Efficient, certifiably optimal clustering with applications to latent variable graphical models

被引:0
|
作者
Carson Eisenach
Han Liu
机构
[1] Princeton University,Department of Operations Research and Financial Engineering
[2] Northwestern University,Department of Electrical Engineering and Computer Science
来源
Mathematical Programming | 2019年 / 176卷
关键词
90C22; 90C35; 90C90; 62H30;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the task of clustering either d variables or d points into K groups, we investigate efficient algorithms to solve the Peng–Wei (P–W) K-means semi-definite programming (SDP) relaxation. The P–W SDP has been shown in the literature to have good statistical properties in a variety of settings, but remains intractable to solve in practice. To this end we propose FORCE, a new algorithm to solve this SDP relaxation. Compared to off-the-shelf interior point solvers, our method reduces the computational complexity of solving the SDP from O~(d7logϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^7\log \epsilon ^{-1})$$\end{document} to O~(d6K-2ϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^{6}K^{-2}\epsilon ^{-1})$$\end{document} arithmetic operations for an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-optimal solution. Our method combines a primal first-order method with a dual optimality certificate search, which when successful, allows for early termination of the primal method. We show for certain variable clustering problems that, with high probability, FORCE is guaranteed to find the optimal solution to the SDP relaxation and provide a certificate of exact optimality. As verified by our numerical experiments, this allows FORCE to solve the P–W SDP with dimensions in the hundreds in only tens of seconds. For a variation of the P–W SDP where K is not known a priori a slight modification of FORCE reduces the computational complexity of solving this problem as well: from O~(d7logϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^7\log \epsilon ^{-1})$$\end{document} using a standard SDP solver to O~(d4ϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^{4}\epsilon ^{-1})$$\end{document}.
引用
收藏
页码:137 / 173
页数:36
相关论文
共 50 条
  • [41] Industrial applications of product design through the inversion of latent variable models
    Jaeckle, CM
    MacGregor, JF
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) : 199 - 210
  • [42] Learning Gaussian graphical models with latent confounders
    Wang, Ke
    Franks, Alexander
    Oh, Sang-Yun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [43] Latent variable and latent structure models.
    Glaser, DN
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2003, 10 (01) : 165 - 174
  • [44] Latent Gaussian Graphical Models with Golazo Penalty
    Rodriguez, Ignacio Echave-Sustaeta
    Rottger, Frank
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, 2024, 246 : 199 - 212
  • [45] Optimal Nonmyopic Value of Information in Graphical Models - Efficient Algorithms and Theoretical Limits
    Krause, Andreas
    Guestrin, Carlos
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1339 - 1345
  • [46] CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS
    Mcparland, Damien
    Gormley, Isobel Claire
    Mccormick, Tyler H.
    Clark, Samuel J.
    Kabudula, Chodziwadziwa Whiteson
    Collinson, Mark A.
    ANNALS OF APPLIED STATISTICS, 2014, 8 (02): : 747 - 776
  • [47] Block-Wise Variable Selection for Clustering Via Latent States of Mixture Models
    Seo, Beomseok
    Lin, Lin
    Li, Jia
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (01) : 138 - 150
  • [48] Dimension in latent variable models
    Levine, MV
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (04) : 450 - 466
  • [49] Discrete Latent Variable Models
    Bartolucci, Francesco
    Pandolfi, Silvia
    Pennoni, Fulvia
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 425 - 452
  • [50] Tensors and Latent Variable Models
    Ishteva, Mariya
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 49 - 55