Efficient, certifiably optimal clustering with applications to latent variable graphical models

被引:0
|
作者
Carson Eisenach
Han Liu
机构
[1] Princeton University,Department of Operations Research and Financial Engineering
[2] Northwestern University,Department of Electrical Engineering and Computer Science
来源
Mathematical Programming | 2019年 / 176卷
关键词
90C22; 90C35; 90C90; 62H30;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the task of clustering either d variables or d points into K groups, we investigate efficient algorithms to solve the Peng–Wei (P–W) K-means semi-definite programming (SDP) relaxation. The P–W SDP has been shown in the literature to have good statistical properties in a variety of settings, but remains intractable to solve in practice. To this end we propose FORCE, a new algorithm to solve this SDP relaxation. Compared to off-the-shelf interior point solvers, our method reduces the computational complexity of solving the SDP from O~(d7logϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^7\log \epsilon ^{-1})$$\end{document} to O~(d6K-2ϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^{6}K^{-2}\epsilon ^{-1})$$\end{document} arithmetic operations for an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-optimal solution. Our method combines a primal first-order method with a dual optimality certificate search, which when successful, allows for early termination of the primal method. We show for certain variable clustering problems that, with high probability, FORCE is guaranteed to find the optimal solution to the SDP relaxation and provide a certificate of exact optimality. As verified by our numerical experiments, this allows FORCE to solve the P–W SDP with dimensions in the hundreds in only tens of seconds. For a variation of the P–W SDP where K is not known a priori a slight modification of FORCE reduces the computational complexity of solving this problem as well: from O~(d7logϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^7\log \epsilon ^{-1})$$\end{document} using a standard SDP solver to O~(d4ϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\mathcal {O}}}}(d^{4}\epsilon ^{-1})$$\end{document}.
引用
收藏
页码:137 / 173
页数:36
相关论文
共 50 条
  • [1] Efficient, certifiably optimal clustering with applications to latent variable graphical models
    Eisenach, Carson
    Liu, Han
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 137 - 173
  • [2] Replicates in high dimensions, with applications to latent variable graphical models
    Tan, Kean Ming
    Ning, Yang
    Witten, Daniela M.
    Liu, Han
    BIOMETRIKA, 2016, 103 (04) : 761 - +
  • [3] Estimating differential latent variable graphical models with applications to brain connectivity
    Na, S.
    Kolar, M.
    Koyejo, O.
    BIOMETRIKA, 2021, 108 (02) : 425 - 442
  • [4] Learning Latent Variable Gaussian Graphical Models
    Meng, Zhaoshi
    Eriksson, Brian
    Hero, Alfred O., III
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1269 - 1277
  • [5] Adaptive Variable Clustering in Gaussian Graphical Models
    Sun, Siqi
    Zhu, Yuancheng
    Xu, Jinbo
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 931 - 939
  • [6] AR Identification of Latent-Variable Graphical Models
    Zorzi, Mattia
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (09) : 2327 - 2340
  • [7] Latent variable models for probabilistic graph clustering
    Lin, JK
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 187 - 194
  • [8] LATENT VARIABLE MODELS - APPLICATIONS IN EDUCATION
    RINDSKOPF, D
    CONTEMPORARY EDUCATIONAL PSYCHOLOGY, 1984, 9 (02) : 104 - 121
  • [9] A Scalable Strategy for the Identification of Latent-Variable Graphical Models
    Alpago, Daniele
    Zorzi, Mattia
    Ferrante, Augusto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3349 - 3362
  • [10] Efficient Regularization Parameter Selection for Latent Variable Graphical Models via Bi-Level Optimization
    Giesen, Joachim
    Nussbaum, Frank
    Schneider, Christopher
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2378 - 2384