General scheme of one-step variational-gradient methods for linear equations

被引:0
|
作者
A. Yu. Luchka
O. É. Noshchenko
N. I. Tukalevskaya
机构
来源
关键词
Gradient Method; Explicit Scheme; Independent Function; Minimum Discrepancy Method; Invertible Linear Operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:223 / 229
页数:6
相关论文
共 50 条
  • [41] An improved convergence analysis of a one-step intermediate Newton iterative scheme for nonlinear equations
    Argyros, Ioannis K.
    Uko, Livinus U.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 38 (1-2) : 243 - 256
  • [42] Randomised one-step time integration methods for deterministic operator differential equations
    Lie, Han Cheng
    Stahn, Martin
    Sullivan, T. J.
    CALCOLO, 2022, 59 (01)
  • [43] STABILITY ANALYSIS OF ONE-STEP METHODS FOR NEUTRAL DELAY-DIFFERENTIAL EQUATIONS
    BELLEN, A
    JACKIEWICZ, Z
    ZENNARO, M
    NUMERISCHE MATHEMATIK, 1988, 52 (06) : 605 - 619
  • [44] A class of one-step one-stage methods for stiff systems of ordinary differential equations
    Bulatov, M. V.
    Tygliyan, A. V.
    Filippov, S. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) : 1167 - 1180
  • [45] A class of one-step one-stage methods for stiff systems of ordinary differential equations
    M. V. Bulatov
    A. V. Tygliyan
    S. S. Filippov
    Computational Mathematics and Mathematical Physics, 2011, 51 : 1167 - 1180
  • [46] BLOCK IMPLICIT ONE-STEP METHODS
    WATANABE, DS
    MATHEMATICS OF COMPUTATION, 1978, 32 (142) : 405 - 414
  • [47] BLOCK IMPLICIT ONE-STEP METHODS
    SHAMPINE, LF
    WATTS, HA
    MATHEMATICS OF COMPUTATION, 1969, 23 (108) : 731 - &
  • [48] INVARIANT CURVES OF ONE-STEP METHODS
    EIROLA, T
    BIT, 1988, 28 (01): : 113 - 122
  • [49] ONE-STEP NUMERICAL-METHODS FOR THE SOLUTION OF SYSTEMS OF LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS OF THE 2ND KIND
    DENISENKO, NV
    YANOVICH, LA
    DIFFERENTIAL EQUATIONS, 1983, 19 (05) : 650 - 662
  • [50] A one-step algorithm for strongly non-linear full fractional duffing equations
    Biazar, Jafar
    Ebrahimi, Hamed
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2024, 12 (01): : 117 - 135