Thin sets of integers in harmonic analysis and p-stable random fourier series

被引:0
|
作者
Pascal Lefèvre
Daniel Li
Hervé Queffélec
Luis Rodríguez-Piazza
机构
[1] Univ. Lille Nord de France U-Artois,Fédération CNRS Nord
[2] Laboratoire de Mathématiques de Lens EA 2462,Pas
[3] Univ Lille Nord de France,de
[4] Universidad de Sevilla,Calais FR 2956 Faculté Jean Perrin
来源
关键词
Trigonometric Polynomial; Orlicz Space; Orlicz Function; Mesh Condition; Gaussian Norm;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the behaviour of some thin sets of integers defined through random trigonometric polynomials when one replaces Gaussian or Rademacher variables with p-stable ones, 1 < p < 2. We show that in one case, this behaviour is essentially the same as in the Gaussian case, whereas in another case, it is entirely different.
引用
收藏
页码:187 / 211
页数:24
相关论文
共 50 条
  • [21] ANTISTABLE CLASSES OF THIN SETS IN HARMONIC-ANALYSIS
    KAHANE, S
    ILLINOIS JOURNAL OF MATHEMATICS, 1993, 37 (02) : 186 - 223
  • [22] Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series
    Slevinsky, Richard Mikael
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (31) : 585 - 606
  • [23] Analysis of Harmonic and Inter-harmonic Signals through Generalized-Fourier Series
    Nuno, V.
    Uribe, F. A.
    Barocio, E.
    Zuniga, P.
    2016 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXPOSITION-LATIN AMERICA (PES T&D-LA), 2016,
  • [24] Cesaro Summability of Two-dimensional Walsh-Fourier Series on the Ring of Integers in a p-series Field
    朱月萍
    郑维行
    Northeastern Mathematical Journal, 1998, (03) : 65 - 72
  • [25] NON-CLOSED THIN SETS IN HARMONIC-ANALYSIS
    HARTMAN, S
    COLLOQUIUM MATHEMATICUM, 1975, 33 (01) : 117 - 122
  • [26] Harmonic Analysis of a Modular Multilevel Converter Using Double Fourier Series
    Ngoc-Thinh Quach
    Chae, Sang Heon
    Ahn, Jin Hong
    Kim, Eel-Hwan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (01) : 298 - 306
  • [27] Invariant means and thin sets in harmonic analysis with applications to prime numbers
    Lefevre, Pascal
    Rodriguez-Piazza, Luis
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 72 - 84
  • [29] Quantitative evaluation of irregular astigmatism by Fourier series harmonic analysis of videokeratography data
    Oshika, T
    Tomidokoro, A
    Maruo, K
    Tokunaga, T
    Miyata, N
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1998, 39 (05) : 705 - 709
  • [30] Harmonic Analysis in PWM Converters Using Short-Time Fourier Series
    Xie, Lihong
    Yuan, Xibo
    Ruan, Xinbo
    Ji, Qing
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 2812 - 2818