Brain-Computer Interface with Corrupted EEG Data: a Tensor Completion Approach

被引:0
|
作者
J. Solé-Casals
C. F. Caiafa
Q. Zhao
A. Cichocki
机构
[1] University of Vic – Central University of Catalonia,Data and Signal Processing Research Group
[2] Instituto Argentino de Radioastronomía (IAR) – CCT-La Plata,Department of Psychological and Brain Sciences
[3] CONICET,School of Automation
[4] CICPBA,Department of Informatics
[5] Indiana University,College of Computer Science
[6] Tensor Learning Unit – RIKEN Center for Advanced Intelligence Project,undefined
[7] Guangdong University of Technology,undefined
[8] Skolkovo Institute of Science and Technology,undefined
[9] Nicolaus Copernicus University,undefined
[10] Hangzhou Dianzi University,undefined
来源
Cognitive Computation | 2018年 / 10卷
关键词
Brain-computer interface; EEG; Tensor completion; Tensor decomposition; Missing samples;
D O I
暂无
中图分类号
学科分类号
摘要
One of the current issues in brain-computer interface (BCI) is how to deal with noisy electroencephalography (EEG) measurements organized as multidimensional datasets (tensors). On the other hand, recently, significant advances have been made in multidimensional signal completion algorithms that exploit tensor decomposition models to capture the intricate relationship among entries in a multidimensional signal. We propose to use tensor completion applied to EEG data for improving the classification performance in a motor imagery BCI system with corrupted measurements. Noisy measurements (electrode misconnections, subject movements, etc.) are considered as unknowns (missing samples) that are inferred from a tensor decomposition model (tensor completion). We evaluate the performance of four recently proposed tensor completion algorithms, CP-WOPT (Acar et al. Chemom Intell Lab Syst. 106:41-56, 2011), 3DPB-TC (Caiafa et al. 2013), BCPF (Zhao et al. IEEE Trans Pattern Anal Mach Intell. 37(9):1751-1763, 2015), and HaLRT (Liu et al. IEEE Trans Pattern Anal Mach Intell. 35(1):208-220, 2013), plus a simple interpolation strategy, first with random missing entries and then with missing samples constrained to have a specific structure (random missing channels), which is a more realistic assumption in BCI applications. We measured the ability of these algorithms to reconstruct the tensor from observed data. Then, we tested the classification accuracy of imagined movement in a BCI experiment with missing samples. We show that for random missing entries, all tensor completion algorithms can recover missing samples increasing the classification performance compared to a simple interpolation approach. For the random missing channels case, we show that tensor completion algorithms help to reconstruct missing channels, significantly improving the accuracy in the classification of motor imagery (MI), however, not at the same level as clean data. Summarizing, compared to the interpolation case, all tensor completion algorithms succeed to increase the classification performance by 7–9% (LDA–SVD) for random missing entries and 15–8% (LDA–SVD) for random missing channels. Tensor completion algorithms are useful in real BCI applications. The proposed strategy could allow using motor imagery BCI systems even when EEG data is highly affected by missing channels and/or samples, avoiding the need of new acquisitions in the calibration stage.
引用
收藏
页码:1062 / 1074
页数:12
相关论文
共 50 条
  • [21] EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme
    Ji, Hongfei
    Li, Jie
    Lu, Rongrong
    Gu, Rong
    Cao, Lei
    Gong, Xiaoliang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [22] An automatic optimum data selection method for EEG-based brain-computer interface
    Zhou, Peng
    Cao, Hongbao
    Ge, Jiayi
    Zhao, Xin
    Wang, Mingshi
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 1515 - +
  • [23] An automatic optimum data selection method for EEG-based brain-computer interface
    Zhou, Peng
    Cao, Hongbao
    Ge, Jiayi
    Zhao, Xin
    Wang, Mingshi
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 1511 - +
  • [24] An EEG-based brain-computer interface for gait training
    Liu, Dong
    Chen, Weihai
    Lee, Kyuhwa
    Pei, Zhongcai
    Millan, Jose del R.
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6755 - 6760
  • [25] A review of recent trends in EEG based Brain-Computer Interface
    Lahane, Prashant
    Jagtap, Jay
    Inamdar, Aditya
    Karne, Nihal
    Dev, Ritwik
    2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
  • [26] A Study of EEG Features For Multisubject Brain-computer Interface Classification
    Song, Xiaomu
    Perera, Viraga
    Yoon, Suk-Chung
    2014 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2014,
  • [27] Plementation of a brain-computer interface based on a mobile EEG device
    Song Xiaoqin
    AGRO FOOD INDUSTRY HI-TECH, 2017, 28 (01): : 2146 - 2150
  • [28] A systematic review on hybrid EEG/fNIRS in brain-computer interface
    Liu, Ziming
    Shore, Jeremy
    Wang, Miao
    Yuan, Fengpei
    Buss, Aaron
    Zhao, Xiaopeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68 (68)
  • [29] Wadsworth EEG-based brain-computer interface (BCI)
    Wolpaw, JR
    McFarland, DJ
    Vaughan, TM
    PSYCHOPHYSIOLOGY, 1999, 36 : S16 - S16
  • [30] An EEG-Based Brain-Computer Interface for Emotion Recognition
    Pan, Jiahui
    Li, Yuanqing
    Wang, Jun
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2063 - 2067