A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution

被引:0
|
作者
Laizhong Cui
Genghui Li
Zexuan Zhu
Zhenkun Wen
Nan Lu
Jian Lu
机构
[1] Shenzhen University,College of Computer Science and Software Engineering
[2] City University of Hong Kong,Department of Computer Science
[3] Shenzhen University,College of Mathematics and Statistics
来源
Soft Computing | 2018年 / 22卷
关键词
Differential evolution; Parameter self-adaptation; Global optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Differential evolution (DE) is a simple yet powerful smart computing technique for numerical optimization. However, the performance of DE significantly relies on its parameters (scale factor F and crossover rate CR) of trial vector generating strategy. To address this issue, we propose a new DE variant by introducing a new parameter self-adaptation method into DE, called ADEDE. In ADEDE, a parameter population is established for the solution population, which is also updated from generation to generation based on the differential evolution under the basic principle that the good parameter individuals will go into the next generation at a high probability, while the bad parameter individuals will be updated by learning from the good parameter individuals at a large probability. To validate the efficiency of the proposed parameter self-adaptation method, the comparison experiments are tested on 22 benchmark functions. The experimental results show that the performance of classical DE can be significantly improved by our parameter self-adaptation method, and our method is better than or at least comparable to some other parameter control techniques.
引用
收藏
页码:6171 / 6190
页数:19
相关论文
共 50 条
  • [31] Parameter adaptation for Differential Evolution with Design of Experiments
    Zielinski, Karin
    Laur, Rainer
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 212 - +
  • [32] PSO-Tuned Control Parameter in Differential Evolution Algorithm
    Si, Tapas
    Jana, Nanda Dulal
    Sil, Jaya
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 417 - 424
  • [33] An Efficient Binary Differential Evolution with Parameter Adaptation
    Jia, Dongli
    Duan, Xintao
    Khan, Muhammad Khurram
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (02) : 328 - 336
  • [34] Distance Based Parameter Adaptation for Differential Evolution
    Viktorin, Adam
    Senkerik, Roman
    Pluhacek, Michal
    Kadavy, Tomas
    Zamuda, Ales
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [35] Two-stage differential evolution with novel parameter control
    Meng, Zhenyu
    Yang, Cheng
    [J]. INFORMATION SCIENCES, 2022, 596 : 321 - 342
  • [36] Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation
    Fan, Qinqin
    Zhang, Yilian
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 164 - 171
  • [37] APDDE: self-adaptive parameter dynamics differential evolution algorithm
    Wang, Hong-bo
    Ren, Xue-na
    Li, Guo-qing
    Tu, Xu-yan
    [J]. SOFT COMPUTING, 2018, 22 (04) : 1313 - 1333
  • [38] APDDE: self-adaptive parameter dynamics differential evolution algorithm
    Hong-bo Wang
    Xue-na Ren
    Guo-qing Li
    Xu-yan Tu
    [J]. Soft Computing, 2018, 22 : 1313 - 1333
  • [39] Introducing a stochastic parameter control method to an adaptive differential evolution
    Kadota, Masaki
    Yasuda, Toshiyuki
    Matsumura, Yoshiyuki
    Ohkura, Kazuhiro
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2015, 135 (09) : 1142 - 1148
  • [40] Parameter Combination Framework for the Differential Evolution Algorithm
    Zhang, Jinghua
    Dong, Ze
    [J]. ALGORITHMS, 2019, 12 (04)