Holographic Entanglement Entropy of the BTZ Black Hole

被引:0
|
作者
Mariano Cadoni
Maurizio Melis
机构
[1] Università di Cagliari,Dipartimento di Fisica
[2] and INFN sezione di Cagliari,undefined
来源
Foundations of Physics | 2010年 / 40卷
关键词
Black holes; Entanglement entropy; Holographic principle; Two-dimensional conformal field theory;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate quantum entanglement of gravitational configurations in 3D AdS gravity using the AdS/CFT correspondence. We derive explicit formulas for the holographic entanglement entropy (EE) of the BTZ black hole, conical singularities and regularized AdS3. The leading term in the large temperature expansion of the holographic EE of the BTZ black hole reproduces exactly its Bekenstein-Hawking entropy SBH, whereas the subleading term behaves as ln SBH. We also show that the leading term of the holographic EE for the BTZ black hole can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus. This result indicates that black hole EE is not a fundamental feature of the underlying theory of quantum gravity but emerges when the semiclassical notion of spacetime geometry is used to describe the black hole.
引用
收藏
页码:638 / 657
页数:19
相关论文
共 50 条
  • [21] Planck absolute entropy of a rotating BTZ black hole
    Riaz, S. M. Jawwad
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2018, 39 (02)
  • [22] Entropy function approach to charged BTZ black hole
    Yun Soo Myung
    Yong-Wan Kim
    Young-Jai Park
    [J]. General Relativity and Gravitation, 2010, 42 : 1919 - 1934
  • [23] Entropy product formula for a spinning BTZ black hole
    P. Pradhan
    [J]. JETP Letters, 2015, 102 : 427 - 431
  • [24] Quantum correction to the entropy of noncommutative BTZ black hole
    M. A. Anacleto
    F. A. Brito
    A. G. Cavalcanti
    E. Passos
    J. Spinelly
    [J]. General Relativity and Gravitation, 2018, 50
  • [25] Entropy function approach to charged BTZ black hole
    Myung, Yun Soo
    Kim, Yong-Wan
    Park, Young-Jai
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (08) : 1919 - 1934
  • [26] Power law corrections to BTZ black hole entropy
    Singh, Dharm Veer
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (01):
  • [27] Entropy product formula for a spinning BTZ black hole
    Pradhan, P.
    [J]. JETP LETTERS, 2015, 102 (07) : 427 - 431
  • [28] Corrected entropy of BTZ black hole in tunneling approach
    Modak, Sujoy Kumar
    [J]. PHYSICS LETTERS B, 2009, 671 (01) : 167 - 173
  • [29] BTZ Black Hole Entropy and the Turaev–Viro Model
    Marc Geiller
    Karim Noui
    [J]. Annales Henri Poincaré, 2015, 16 : 609 - 640
  • [30] Cluster algebraic description of entanglement patterns for the BTZ black hole
    Boldis, Bercel
    Levay, Peter
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)