Improvement in background error covariances using ensemble forecasts for assimilation of high-resolution satellite data

被引:0
|
作者
Seung-Woo Lee
Dong-Kyou Lee
机构
[1] Seoul National University,School of Earth and Environmental Sciences
来源
关键词
3DVAR; background error covariances; retrieved satellite data assimilation; ensemble forecasts;
D O I
暂无
中图分类号
学科分类号
摘要
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data.
引用
收藏
相关论文
共 50 条
  • [21] Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations
    Moro, Marina Duran
    Brankart, Jean-Michel
    Brasseur, Pierre
    Verron, Jacques
    OCEAN DYNAMICS, 2017, 67 (07) : 875 - 895
  • [22] Comparison of NMC and Ensemble-Based Climatological Background-Error Covariances in an Operational Limited-Area Data Assimilation System
    Stanesic, Antonio
    Horvath, Kristian
    Keresturi, Endi
    ATMOSPHERE, 2019, 10 (10)
  • [23] Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations
    Marina Durán Moro
    Jean-Michel Brankart
    Pierre Brasseur
    Jacques Verron
    Ocean Dynamics, 2017, 67 : 875 - 895
  • [24] Regional Ensemble-Variational Data Assimilation Using Global Ensemble Forecasts
    Wu, Wan-Shu
    Parrish, David F.
    Rogers, Eric
    Lin, Ying
    WEATHER AND FORECASTING, 2017, 32 (01) : 83 - 96
  • [25] An impact study of updating background error covariances in the ALADIN-France data assimilation system
    Berre, Loik
    Monteiro, Maria
    Pires, Carlos
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (19) : 11075 - 11086
  • [26] Importance of using ensemble estimated background error covariances for the quality of atmospheric ozone analyses
    Massart, S.
    Piacentini, A.
    Pannekoucke, O.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (665) : 889 - 905
  • [27] Assimilation of High-Resolution Tropical Cyclone Observations with an Ensemble Kalman Filter Using HEDAS: Evaluation of 2008-11 HWRF Forecasts
    Aberson, Sim D.
    Aksoy, Altug
    Sellwood, Kathryn J.
    Vukicevic, Tomislava
    Zhang, Xuejin
    MONTHLY WEATHER REVIEW, 2015, 143 (02) : 511 - 523
  • [28] Spatial verification of high-resolution ensemble precipitation forecasts using local wavelet spectra
    Kapp, Florian
    Friederichs, Petra
    Brune, Sebastian
    Weniger, Michael
    METEOROLOGISCHE ZEITSCHRIFT, 2018, 27 (06) : 467 - 480
  • [29] Regional Assimilation System for Transformed Retrievals from Satellite High-Resolution Infrared Data
    Antonelli, Paolo
    Cherubini, Tiziana
    Businger, Steven
    De Haan, Siebren
    Scaccia, Paolo
    Moncet, Jean-Luc
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2020, 59 (07) : 1171 - 1193
  • [30] An Improvement on the Clustering of High-Resolution Satellite Images Using a Hybrid Algorithm
    Chehreghan, Alireza
    Abbaspour, Rahim Ali
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (04) : 579 - 590