Sharp continuity results for the short-time Fourier transform and for localization operators

被引:0
|
作者
Elena Cordero
Fabio Nicola
机构
[1] University of Torino,Department of Mathematics
[2] Politecnico di Torino,Dipartimento di Matematica
来源
Monatshefte für Mathematik | 2011年 / 162卷
关键词
Short-time Fourier transform; Modulation spaces; Wiener amalgam spaces; Localization operators; 35S05; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We completely characterize the boundedness on Wiener amalgam spaces of the short-time Fourier transform (STFT), and on both Lp and Wiener amalgam spaces of a special class of pseudodifferential operators, called localization operators. Precisely, sufficient conditions for the STFT to be bounded on the Wiener amalgam spaces W(Lp, Lq) are given and their sharpness is shown. Localization operators are treated similarly: using different techniques from those employed in the literature, we relax the known sufficient boundedness conditions for these operators to be bounded on Lp spaces and prove the optimality of our results. Next, we exhibit sufficient and necessary conditions for such operators to be bounded on Wiener amalgam spaces.
引用
收藏
页码:251 / 276
页数:25
相关论文
共 50 条
  • [21] Directional short-time Fourier transform of distributions
    Katerina Hadzi-Velkova Saneva
    Sanja Atanasova
    Journal of Inequalities and Applications, 2016
  • [22] Directional Short-Time Fourier Transform of Ultradistributions
    Sanja Atanasova
    Snježana Maksimović
    Stevan Pilipović
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3069 - 3087
  • [23] Staggered parallel short-time Fourier transform
    Labao, Alfonso B.
    Camaclang, Rodolfo C., III
    Caro, Jaime D. L.
    DIGITAL SIGNAL PROCESSING, 2019, 93 : 70 - 86
  • [24] Inversion formulas for the short-time Fourier transform
    Feichtinger, Hans G.
    Weisz, Ferenc
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) : 507 - 521
  • [25] Directional Short-Time Fourier Transform of Ultradistributions
    Atanasova, Sanja
    Maksimovic, Snjezana
    Pilipovic, Stevan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3069 - 3087
  • [26] Sliding Short-Time Fractional Fourier Transform
    Huang, Gaowa
    Zhang, Feng
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1823 - 1827
  • [27] Multiplier theorems for the short-time Fourier transform
    Weisz, Ferenc
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (01) : 133 - 149
  • [29] Inversion formulas for the short-time Fourier transform
    Hans G. Feichtinger
    Ferenc Weisz
    The Journal of Geometric Analysis, 2006, 16 : 507 - 521
  • [30] Two twinning operators when imposing nonlinear modulation in short-time Fourier transform
    Su, Yue
    Ye, Feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4676 - 4686