Operator Equations of Branching Random Walks

被引:0
|
作者
E. Yarovaya
机构
[1] Lomonosov Moscow State University,Department of Probability Theory
[2] Steklov Mathematical Institute of Russian Academy of Sciences,undefined
关键词
Branching random walks; Green function; Convolution-type operator; Multipoint perturbations; Positive eigenvalues; 60J80; 60J35; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
Consideration is given to the continuous-time supercritical branching random walk over a multidimensional lattice with a finite number of particle generation sources of the same intensity both with and without constraint on the variance of jumps of random walk underlying the process. Asymptotic behavior of the Green function and eigenvalue of the evolution operator of the mean number of particles under source intensity close to the critical one was established.
引用
收藏
页码:1007 / 1021
页数:14
相关论文
共 50 条
  • [1] Operator Equations of Branching Random Walks
    Yarovaya, E.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2019, 21 (03) : 1007 - 1021
  • [2] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [3] The structure of the positive discrete spectrum of the evolution operator arising in branching random walks
    Yarovaya, E. B.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 507 - 510
  • [4] The structure of the positive discrete spectrum of the evolution operator arising in branching random walks
    E. B. Yarovaya
    Doklady Mathematics, 2015, 92 : 507 - 510
  • [5] Branching Random Walks and Martingales
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28
  • [6] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [7] On the trace of branching random walks
    Benjamini, Itai
    Mueller, Sebastian
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 231 - 247
  • [8] Branching Random Walks with Selection
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 99 - 105
  • [9] MINIMA IN BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Reed, Bruce
    ANNALS OF PROBABILITY, 2009, 37 (03): : 1044 - 1079
  • [10] Simplicial branching random walks
    Ron Rosenthal
    Journal of Applied and Computational Topology, 2024, 8 (6) : 1751 - 1791