Shaping and exploring the micro- and nanoworld using bipolar electrochemistry

被引:0
|
作者
Gabriel Loget
Alexander Kuhn
机构
[1] Université de Bordeaux,
[2] IPB,undefined
[3] UMR 5255,undefined
[4] ENSCBP,undefined
来源
关键词
Bipolar electrochemistry; Contactless electrodeposition; Contactless detection; Electrogenerated electrochemiluminescence; Janus particles;
D O I
暂无
中图分类号
学科分类号
摘要
Bipolar electrochemistry is a technique with a rather young history in the field of analytical chemistry. Being based on the polarization of a conducting object which is exposed to an external electric field, it allowed recently the development of new methods for controlled surface modification at the micro- and nanoscale and very original analytical applications. Using bipolar electrodes, analyte separation and detection becomes possible based on miniaturized systems. Moreover, the modified objects that can be created with bipolar electrochemistry could find applications as key components for detection systems. In this contribution, the principles of bipolar electrochemistry will be reviewed, as well as recent developments that focus on the modification of objects at the nano- and microscale and their potential application in miniaturized analytical systems.
引用
收藏
页码:1691 / 1704
页数:13
相关论文
共 50 条
  • [31] Using Supercritical Fluid Technologies to Prepare Micro- and Nanoparticles
    A. M. Vorobei
    O. O. Parenago
    [J]. Russian Journal of Physical Chemistry A, 2021, 95 : 407 - 417
  • [32] Micro- and Nanofabrication technologies using Nanopositioning and Nanomeasuring Machines
    Weidenfeller, Laura
    Hofmann, Martin
    Kirchner, Johannes
    Supreeti, Shraddha
    Rangelow, Ivo W.
    Sinzinger, Stefan
    Manske, Eberhard
    [J]. OPTICAL MEASUREMENT SYSTEMS FOR INDUSTRIAL INSPECTION XI, 2019, 11056
  • [33] Wear and mechanical characterisation on micro- to picoscales using AFM
    Bhushan, B
    [J]. INTERNATIONAL MATERIALS REVIEWS, 1999, 44 (03) : 105 - 117
  • [34] Using Supercritical Fluid Technologies to Prepare Micro- and Nanoparticles
    Vorobei, A. M.
    Parenago, O. O.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 95 (03) : 407 - 417
  • [35] Wetting micro- and nanofluidic devices using supercritical water
    Riehn, Robert
    Austin, Robert H.
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (16) : 5933 - 5934
  • [36] Advances in Anticancer Protein Delivery using Micro-/Nanoparticles
    Sun, Wujin
    Lu, Yue
    Gu, Zhen
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (12) : 1204 - 1222
  • [37] Laser micro- and nanostructuring using femtosecond Bessel beams
    Bhuyan, M. K.
    Courvoisier, F.
    Phing, H. S.
    Jedrkiewicz, O.
    Recchia, S.
    Di Trapani, P.
    Dudley, J. M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 199 (01): : 101 - 110
  • [38] Micro- And Nano-Patterning Using Imprinting Technique
    Lu, Haijing
    Shan, X. C.
    Sun, Yaofeng
    Ng, Sum Huan
    Lu, Albert C. W.
    [J]. INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 : 368 - 372
  • [39] Laser micro- and nanostructuring using femtosecond Bessel beams
    M. K. Bhuyan
    F. Courvoisier
    H. S. Phing
    O. Jedrkiewicz
    S. Recchia
    P. Di Trapani
    J. M. Dudley
    [J]. The European Physical Journal Special Topics, 2011, 199 : 101 - 110
  • [40] A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments
    Zeisig, J.
    Hufenbach, J.
    Wendrock, H.
    Gemming, T.
    Eckert, J.
    Kuehn, U.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (14)