Regularity of almost minimizers with free boundary

被引:0
|
作者
G. David
T. Toro
机构
[1] Université Paris-Sud,Equipe d’Analyse Harmonique
[2] University of Washington,Department of Mathematics
关键词
35R35; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the local regularity of almost minimizers of the functional J(u)=∫Ω|∇u(x)|2+q+2(x)χ{u>0}(x)+q-2(x)χ{u<0}(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} J(u)=\int _\Omega |\nabla u(x)|^2 +q^2_+(x)\chi _{\{u>0\}}(x) +q^2_-(x)\chi _{\{u<0\}}(x) \end{aligned}$$\end{document}where q±∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\pm \in L^\infty (\Omega )$$\end{document}. Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981; Alt et al., in Trans Am Math Soc 282:431–461, 1984; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.
引用
收藏
页码:455 / 524
页数:69
相关论文
共 50 条
  • [31] REGULARITY OF ALMOST-MINIMIZERS OF HOLDER-COEFFICIENT SURFACE ENERGIES
    Simmons, David A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (07) : 3233 - 3299
  • [32] Regularity of Minimizers in the Two-Phase Free Boundary Problems in Orlicz-Sobolev Spaces
    Zheng, Jun
    Feng, Binhua
    Zhao, Peihao
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (01): : 37 - 47
  • [33] A boundary regularity result for minimizers of variational integrals with nonstandard growth
    Bulicek, Miroslav
    Maringova, Erika
    Stroffolini, Bianca
    Verde, Anna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 153 - 168
  • [34] Regularity of minimizers for a class of anisotropic free discontinuity problems
    Fusco, N
    Mingione, G
    Trombetti, C
    JOURNAL OF CONVEX ANALYSIS, 2001, 8 (02) : 349 - 367
  • [35] Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth
    Frank Duzaar
    Joseph F. Grotowski
    Manfred Kronz
    Annali di Matematica Pura ed Applicata, 2005, 184 : 421 - 448
  • [36] Regularity for almost-minimizers of variable coefficient Bernoulli-type functionals
    David, Guy
    Engelstein, Max
    Smit Vega Garcia, Mariana
    Toro, Tatiana
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 2131 - 2169
  • [37] Partial and full boundary regularity for minimizers of functionals with nonquadratic growth
    Duzaar, F
    Grotowski, JF
    Kronz, M
    JOURNAL OF CONVEX ANALYSIS, 2004, 11 (02) : 437 - 476
  • [38] Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth
    Duzaar, Frank
    Grotowski, Joseph F.
    Kronz, Manfred
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (04) : 421 - 448
  • [39] Regularity for almost-minimizers of variable coefficient Bernoulli-type functionals
    Guy David
    Max Engelstein
    Mariana Smit Vega Garcia
    Tatiana Toro
    Mathematische Zeitschrift, 2021, 299 : 2131 - 2169
  • [40] LIPSCHITZ REGULARITY OF ALMOST MINIMIZERS IN A BERNOULLI PROBLEM WITH NON-STANDARD GROWTH
    da Silva, Joao vitor
    Silva, Analia
    Vivas, Hernan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (06) : 1555 - 1586