Regularity of almost minimizers with free boundary

被引:0
|
作者
G. David
T. Toro
机构
[1] Université Paris-Sud,Equipe d’Analyse Harmonique
[2] University of Washington,Department of Mathematics
关键词
35R35; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the local regularity of almost minimizers of the functional J(u)=∫Ω|∇u(x)|2+q+2(x)χ{u>0}(x)+q-2(x)χ{u<0}(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} J(u)=\int _\Omega |\nabla u(x)|^2 +q^2_+(x)\chi _{\{u>0\}}(x) +q^2_-(x)\chi _{\{u<0\}}(x) \end{aligned}$$\end{document}where q±∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\pm \in L^\infty (\Omega )$$\end{document}. Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981; Alt et al., in Trans Am Math Soc 282:431–461, 1984; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.
引用
收藏
页码:455 / 524
页数:69
相关论文
共 50 条
  • [1] Regularity of almost minimizers with free boundary
    David, G.
    Toro, T.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 455 - 524
  • [2] Free boundary regularity for almost-minimizers
    David, Guy
    Engelstein, Max
    Toro, Tatiana
    ADVANCES IN MATHEMATICS, 2019, 350 : 1109 - 1192
  • [3] Boundary regularity for almost minimizers of quasiconvex variational problems
    Kronz, M
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (03): : 351 - 382
  • [4] Boundary regularity for almost minimizers of quasiconvex variational problems
    Manfred Kronz
    Nonlinear Differential Equations and Applications NoDEA, 2005, 12 : 351 - 382
  • [5] Almost minimizers for a sublinear system with free boundary
    De Silva, Daniela
    Jeon, Seongmin
    Shahgholian, Henrik
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (05)
  • [6] Almost minimizers for a singular system with free boundary
    De Silva, Daniela
    Jeon, Seongmin
    Shahgholian, Henrik
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 167 - 203
  • [7] Almost minimizers for a sublinear system with free boundary
    Daniela De Silva
    Seongmin Jeon
    Henrik Shahgholian
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [8] Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals
    Duzaar, F
    Steffen, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 546 : 73 - 138
  • [9] Almost minimizers for semilinear free boundary problems with variable coefficients
    de Queiroz, Olivaine S.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (10) : 1486 - 1501
  • [10] Almost minimizers of the one-phase free boundary problem
    De Silva, D.
    Savin, O.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (08) : 913 - 930