Genetics of tolerance to bacterial wilt disease in tomato (Solanum lycopersicum L.)

被引:0
|
作者
Brati Acharya
Ankit Kumar Ghorai
Subhramalya Dutta
Praveen Kumar Maurya
Subrata Dutta
Asit Kumar Mandal
Arup Chattopadhyay
Pranab Hazra
机构
[1] Bidhan Chandra Krishi Viswavidyalaya,Department of Vegetable Science, Faculty of Horticulture
[2] Bidhan Chandra Krishi Viswavidyalaya,Department of Plant Pathology, Faculty of Agriculture
来源
关键词
Bacterial wilt disease; Biovar; Genetics; Tolerance; AUDPC; Tomato;
D O I
暂无
中图分类号
学科分类号
摘要
Tomato production in the Gangetic plains of eastern India is threatened by high incidence of bacterial wilt (BW) disease caused by Ralstonia solanacearum. Understanding the genetic control of tolerance through utilization of tolerant genotype is the prerequisite to frame effective resistant breeding strategy. Genetic control of host tolerance to BW disease was studied employing six generations (P1, P2, F1, F2, BC1, BC2) of two crosses between one tolerant (Utkal Kumari) and two susceptible (CLN-2498D and CLN-2777F) genotype(s) in presence of the predominant virulent strain (Biovar IIIA) of Ralstonia solanacearum through χ2 test and generation mean analysis. It emerged that tolerance to BW disease was conditioned predominantly by single dominant gene in two Tolerant × Susceptible crosses however, significance of scaling tests revealed involvement of duplicate epistasis suggesting somewhat complex inheritance pattern for the tolerance. Area under disease progress-curve (AUDPC) suggested that cumulative disease progress was less in tolerant genotypes of segregating generations. Duplicate epistasis controlling BW disease incidence suggested mild selection intensity in earlier generation, while intense in later generations of the segregating population in tomato. In this situation, modified bulk method of selection is recommended, in which selection is performed after attaining the homozygosity for maximum heterozygous loci. However, development of hybrids involving at least one tolerant parent is the best option for breeding tomato against BW disease.
引用
下载
收藏
页码:591 / 600
页数:9
相关论文
共 50 条
  • [31] Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia
    Faouzi Horchani
    Samira Aschi-Smiti
    Renaud Brouquisse
    Acta Physiologiae Plantarum, 2010, 32 : 1113 - 1123
  • [32] Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants
    Hajiboland, Roghieh
    Aliasgharzadeh, Naser
    Laiegh, Shirin Farsad
    Poschenrieder, Charlotte
    PLANT AND SOIL, 2010, 331 (1-2) : 313 - 327
  • [33] Inoculation with Rhizobacteria Enhanced Tolerance of Tomato (Solanum lycopersicum L.) Plants in Response to Cadmium Stress
    Ting Wei
    Yanni Sun
    Noman Yashir
    Xian Li
    Junkang Guo
    Xun Liu
    HongLei Jia
    Xinhao Ren
    Li Hua
    Journal of Plant Growth Regulation, 2022, 41 : 445 - 460
  • [34] Heritability Estimates and Gene Effects for Heat-tolerance Traits in Tomato (Solanum lycopersicum L.)
    Chi, Nai-Ning
    Crosby, Kevin
    Rooney, William L.
    HORTSCIENCE, 2017, 52 (09) : S410 - S410
  • [35] Inoculation with Rhizobacteria Enhanced Tolerance of Tomato (Solanum lycopersicum L.) Plants in Response to Cadmium Stress
    Wei, Ting
    Sun, Yanni
    Yashir, Noman
    Li, Xian
    Guo, Junkang
    Liu, Xun
    Jia, HongLei
    Ren, Xinhao
    Hua, Li
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (01) : 445 - 460
  • [36] Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants
    Roghieh Hajiboland
    Naser Aliasgharzadeh
    Shirin Farsad Laiegh
    Charlotte Poschenrieder
    Plant and Soil, 2010, 331 : 313 - 327
  • [37] Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia
    Horchani, Faouzi
    Aschi-Smiti, Samira
    Brouquisse, Renaud
    ACTA PHYSIOLOGIAE PLANTARUM, 2010, 32 (06) : 1113 - 1123
  • [38] Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots
    Ferrandez-Gomez, Borja
    Jorda, Juana D.
    Cerdan, Mar
    Sanchez-Sanchez, Antonio
    PLANTS-BASEL, 2024, 13 (10):
  • [39] Molecular characterization of the Indian isolate (Ka-To) of tomato spotted wilt virus (TSWV) infecting tomato (Solanum lycopersicum L.)
    Aravintharaj, R.
    Asokan, R.
    Babu, K. Prasad
    Manamohan, M.
    Nagendran, Krishnan
    3 BIOTECH, 2023, 13 (06)
  • [40] Molecular characterization of the Indian isolate (Ka-To) of tomato spotted wilt virus (TSWV) infecting tomato (Solanum lycopersicum L.)
    R. Aravintharaj
    R. Asokan
    K. Prasad Babu
    M. Manamohan
    Krishnan Nagendran
    3 Biotech, 2023, 13