Morrey–Sobolev Extension Domains

被引:0
|
作者
Pekka Koskela
Yi Ru-Ya Zhang
Yuan Zhou
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beijing University of Aeronautics and Astronautics,Department of Mathematics
来源
关键词
Morrey–Sobolev space; Extension; LLC; Uniform domain; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every uniform domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is a Morrey–Sobolev W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p}$$\end{document}-extension domain for all p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document}, and moreover, that this result is essentially the best possible for each p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document} in the sense that, given a simply connected planar domain or a domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} that is quasiconformal equivalent to a uniform domain, if it is a W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p} $$\end{document}-extension domain, then it must be uniform.
引用
收藏
页码:1413 / 1434
页数:21
相关论文
共 50 条
  • [1] Morrey-Sobolev Extension Domains
    Koskela, Pekka
    Zhang, Yi Ru-Ya
    Zhou, Yuan
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1413 - 1434
  • [2] On Burenkov's extension operator preserving Sobolev-Morrey spaces on Lipschitz domains
    Fanciullo, Maria Stella
    Lamberti, Pier Domenico
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (01) : 37 - 49
  • [3] On Sobolev extension domains in Rn
    Shvartsman, Pavel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (07) : 2205 - 2245
  • [4] UNIFORM AND SOBOLEV EXTENSION DOMAINS
    HERRON, DA
    KOSKELA, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (02) : 483 - 489
  • [5] Traces and Sobolev extension domains
    Harjulehto, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2373 - 2382
  • [6] TRACE RESULT FOR SOBOLEV EXTENSION DOMAINS
    Ait-Akli, Djamel
    Merakeb, Abdelkader
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (04): : 503 - 511
  • [7] ON TRACES OF SOBOLEV FUNCTIONS ON THE BOUNDARY OF EXTENSION DOMAINS
    Biegert, Markus
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4169 - 4176
  • [8] A geometric characterization of planar Sobolev extension domains
    Koskela, Pekka
    Rajala, Tapio
    Zhang, Yi Ru-Ya
    SCIENCE CHINA-MATHEMATICS, 2025,
  • [9] SOBOLEV AND QUASI-CONFORMAL EXTENSION DOMAINS
    GHAMSARI, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) : 1179 - 1188
  • [10] On planar Sobolev Lpm-extension domains
    Shvartsman, Pavel
    Zobin, Nahum
    ADVANCES IN MATHEMATICS, 2016, 287 : 237 - 346