The theory of generalised hydrodynamics for the one-dimensional Bose gas

被引:1
|
作者
Kerr, Matthew L. [1 ]
Kheruntsyan, Karen V. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
AAPPS BULLETIN | 2023年 / 33卷 / 01期
基金
澳大利亚研究理事会;
关键词
Quantum many-body dynamics; Integrable systems; Generalised hydrodynamics; Ultracold quantum gases; Lieb-Liniger model; QUANTUM; SYSTEMS; BOSONS;
D O I
10.1007/s43673-023-00095-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article reviews the recent developments in the theory of generalised hydrodynamics (GHD) with emphasis on the repulsive one-dimensional Bose gas. We discuss the implications of GHD on the mechanisms of thermalisation in integrable quantum many-body systems as well as its ability to describe far-from-equilibrium behaviour of integrable and near-integrable systems in a variety of quantum quench scenarios. We outline the experimental tests of GHD in cold-atom gases and its benchmarks with other microscopic theoretical approaches. Finally, we offer some perspectives on the future direction of the development of GHD.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] THERMODYNAMICS OF A ONE-DIMENSIONAL LATTICE BOSE-GAS
    BOGOLYUBOV, NM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 67 (03) : 614 - 622
  • [22] Statistical properties of one-dimensional attractive Bose gas
    Bienias, P.
    Pawlowski, K.
    Gajda, M.
    Rzazewski, K.
    EPL, 2011, 96 (01)
  • [23] Ideal Bose gas in steep one-dimensional traps
    Rovenchak, Andrij
    Krynytskyi, Yuri
    Fizika Nizkikh Temperatur, 2022, 48 (01): : 23 - 29
  • [24] CORRELATION LENGTH OF THE ONE-DIMENSIONAL BOSE-GAS
    BOGOLIUBOV, NM
    KOREPIN, VE
    NUCLEAR PHYSICS B, 1985, 257 (06) : 766 - 778
  • [25] Statistical mechanics of a one-dimensional δ-function Bose gas
    Wadati, M
    Kato, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (07) : 1924 - 1930
  • [26] Spin waves in a one-dimensional spinor Bose gas
    Fuchs, JN
    Gangardt, DM
    Keilmann, T
    Shlyapnikov, GV
    PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [28] Exponents of Spectral Functions in the One-Dimensional Bose Gas
    Schlottmann, Pedro
    CONDENSED MATTER, 2018, 3 (04): : 1 - 15
  • [29] Berry phase for a Bose gas on a one-dimensional ring
    Todoric, Marija
    Klajn, Bruno
    Jukic, Dario
    Buljan, Hrvoje
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [30] Weakly Interacting Bose Gas in the One-Dimensional Limit
    Krueger, P.
    Hofferberth, S.
    Mazets, I. E.
    Lesanovsky, I.
    Schmiedmayer, J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (26)