The multiset partition algebra

被引:0
|
作者
Sridhar Narayanan
Digjoy Paul
Shraddha Srivastava
机构
[1] Indian Institute of Technology Bombay Powai,Department of Mathematics
[2] Tata Institute of Fundamental Research,Department of Mathematics
[3] Uppsala University Ångströmlaboratoriet,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the multiset partition algebra MPk(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(\xi \right)$$\end{document} over the polynomial ring F[ξ], where F is a field of characteristic 0 and k is a positive integer. When ξ is specialized to a positive integer n, we establish the Schur—Weyl duality between the actions of resulting algebra MPk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(n \right)$$\end{document} and the symmetric group Sn on Symk(Fn). The construction of MPk(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(\xi \right)$$\end{document} generalizes to any vector λ of non-negative integers yielding the algebra MPλ(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(\xi \right)$$\end{document} over F[ξ] so that there is Schur—Weyl duality between the actions of MPλ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(n \right)$$\end{document} and Sn on Symλ(Fn). We find the generating function for the multiplicity of each irreducible representation of Sn in Symλ(Fn), as λ varies, in terms of a plethysm of Schur functions. As consequences we obtain an indexing set for the irreducible representations of MPk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(n \right)$$\end{document} and the generating function for the multiplicity of an irreducible polynomial representation of GLn(F) when restricted to Sn. We show that MPλ(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(\xi \right)$$\end{document} embeds inside the partition algebra P|λ|(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal P}_{\left| \lambda \right|}}\left(\xi \right)$$\end{document}. Using this embedding, we show that the multiset partition algebras are generically semisimple over F. Also, for the specialization of ξ at v in F, we prove that MPλ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(v \right)$$\end{document} is a cellular algebra.
引用
收藏
页码:453 / 500
页数:47
相关论文
共 50 条
  • [41] A Simplified Multiset-Partition Distribution Matching for PS-16QAM Optical Fiber Systems
    Jing, Xinlin
    Zhang, Jing
    Jin, Taowei
    Hu, Shaohua
    Qiu, Kun
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [42] On generalization of rough multiset via multiset ideals
    Hosny, Mona
    Raafat, Mahmoud
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (02) : 1249 - 1261
  • [43] The partition algebra and the plethysm coefficients I: Stability and Foulkes' conjecture
    Bowman, Chris
    Paget, Rowena
    JOURNAL OF ALGEBRA, 2024, 655 : 110 - 138
  • [44] Simple Modules for the Partition Algebra and Monotone Convergence of Kronecker Coefficients
    Bowman, Christopher
    De Visscher, Maud
    Enyang, John
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (04) : 1059 - 1097
  • [45] Multiset group and its generalization to (A, B)-multiset group
    Suma, P.
    John, Sunil Jacob
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 602 - 617
  • [46] Multiset automata
    Csuhaj-Varjú, Erzsébet
    Martín-Vide, Carlos
    Mitrana, Victor
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, 2235 : 69 - 83
  • [47] THE CONCEPT OF MULTISET
    MONRO, GP
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (02): : 171 - 178
  • [48] Multiset Neurons
    Costa, Luciano da Fontoura
    arXiv, 2021,
  • [49] On Multiset Ordering
    Bancerek, Grzegorz
    FORMALIZED MATHEMATICS, 2016, 24 (02): : 95 - 106
  • [50] Multiset automata
    Csuhaj-Varjú, E
    Martín-Vide, C
    Mitrana, V
    MULTISET PROCESSING: MATHEMATICAL, COMPUTER SCIENCE, AND MOLECULAR COMPUTING POINTS OF VIEW, 2001, 2235 : 69 - 83