The multiset partition algebra

被引:0
|
作者
Sridhar Narayanan
Digjoy Paul
Shraddha Srivastava
机构
[1] Indian Institute of Technology Bombay Powai,Department of Mathematics
[2] Tata Institute of Fundamental Research,Department of Mathematics
[3] Uppsala University Ångströmlaboratoriet,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the multiset partition algebra MPk(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(\xi \right)$$\end{document} over the polynomial ring F[ξ], where F is a field of characteristic 0 and k is a positive integer. When ξ is specialized to a positive integer n, we establish the Schur—Weyl duality between the actions of resulting algebra MPk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(n \right)$$\end{document} and the symmetric group Sn on Symk(Fn). The construction of MPk(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(\xi \right)$$\end{document} generalizes to any vector λ of non-negative integers yielding the algebra MPλ(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(\xi \right)$$\end{document} over F[ξ] so that there is Schur—Weyl duality between the actions of MPλ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(n \right)$$\end{document} and Sn on Symλ(Fn). We find the generating function for the multiplicity of each irreducible representation of Sn in Symλ(Fn), as λ varies, in terms of a plethysm of Schur functions. As consequences we obtain an indexing set for the irreducible representations of MPk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_k}\left(n \right)$$\end{document} and the generating function for the multiplicity of an irreducible polynomial representation of GLn(F) when restricted to Sn. We show that MPλ(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(\xi \right)$$\end{document} embeds inside the partition algebra P|λ|(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal P}_{\left| \lambda \right|}}\left(\xi \right)$$\end{document}. Using this embedding, we show that the multiset partition algebras are generically semisimple over F. Also, for the specialization of ξ at v in F, we prove that MPλ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}{{\cal P}_\lambda}\left(v \right)$$\end{document} is a cellular algebra.
引用
收藏
页码:453 / 500
页数:47
相关论文
共 50 条
  • [1] THE MULTISET PARTITION ALGEBRA
    Narayanan, Sridhar
    Paul, Digjoy
    Srivastava, Shraddha
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 255 (01) : 453 - 500
  • [2] Super Multiset RSK and a Mixed Multiset Partition Algebra
    Wilson, Alexander N.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04): : 1 - 30
  • [3] Howe duality of the symmetric group and a multiset partition algebra
    Orellana, Rosa
    Zabrocki, Mike
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 393 - 413
  • [4] A diagram-like basis for the multiset partition algebra
    Wilson, Alexander N.
    ALGEBRAIC COMBINATORICS, 2024, 7 (04):
  • [5] Multiset-Partition Distribution Matching
    Fehenberger, Tobias
    Millar, David S.
    Koike-Akino, Toshiaki
    Kojima, Keisuke
    Parsons, Kieran
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (03) : 1885 - 1893
  • [6] Disjoint, partition and intersection constraints for set and multiset variables
    Bessiere, C
    Hebrard, E
    Hnich, B
    Walsh, T
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2004, PROCEEDINGS, 2004, 3258 : 138 - 152
  • [7] The rook partition algebra
    Grood, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (02) : 325 - 351
  • [8] The center of the partition algebra
    Creedon, Samuel
    JOURNAL OF ALGEBRA, 2021, 570 : 215 - 266
  • [9] The partition algebra revisited
    Doran, WF
    Wales, DB
    JOURNAL OF ALGEBRA, 2000, 231 (01) : 265 - 330
  • [10] The partition algebra as a centralizer algebra of the alternating group
    Bloss, M
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2219 - 2229