Gravitational and Yang-Mills instantons in holographic RG flows

被引:0
|
作者
Edi Gava
Parinya Karndumri
K. S. Narain
机构
[1] INFN — Sezione di Trieste,
[2] International School for Advanced Studies (SISSA),undefined
[3] The Abdus Salam International Centre for Theoretical Physics,undefined
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
We study various holographic RG flow solutions involving warped asymptotically locally Euclidean (ALE) spaces of AN − 1 type. A two-dimensional RG flow from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six dimensional supergravity, interpolating between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_3} \times {S^3}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS3 × S3 geometries. We also find solutions involving non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces. Both flows are of vev type, driven by a vacuum expectation value of a marginal operator. RG flows in four dimensional field theories are studied in the type IIB and type I′ context. In type IIB theory, the flow interpolates between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS5 × S5 geometries. The field theory interpretation is that of an N = 2 SU(n)N quiver gauge theory flowing to N = 4 SU(n) gauge theory. In type I′ theory the solution describes an RG flow from N = 2 quiver gauge theory with a product gauge group to N = 2 gauge theory in the IR, with gauge group USp(n). The corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_2}}} \right.} $\end{document}, respectively. We also explore more general RG flows, in which both the UV and IR CFTs are N = 2 quiver gauge theories and the corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_M} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document}. Finally, we discuss the matching between the geometric and field theoretic pictures of the flows.
引用
收藏
相关论文
共 50 条
  • [21] YANG-MILLS INSTANTONS AND THE S-MATRIX
    HAWKING, SW
    POPE, CN
    NUCLEAR PHYSICS B, 1979, 161 (01) : 93 - 111
  • [22] On RG potentials in Yang-Mills theories
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 1 (217):
  • [23] YANG-MILLS INSTANTONS IN CLOSED FRIEDMANN UNIVERSES
    VERBIN, Y
    PHYSICS LETTERS B, 1989, 223 (3-4) : 296 - 299
  • [24] Gravitational instability of Yang-Mills cosmologies
    Füzfa, A
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (22) : 4753 - 4774
  • [25] GRAVITATIONAL EFFECTS ON YANG-MILLS TOPOLOGY
    CHARAP, JM
    DUFF, MJ
    PHYSICS LETTERS B, 1977, 69 (04) : 445 - 447
  • [26] Instantons and Yang–Mills Flows on Coset Spaces
    Tatiana A. Ivanova
    Olaf Lechtenfeld
    Alexander D. Popov
    Thorsten Rahn
    Letters in Mathematical Physics, 2009, 89 : 231 - 247
  • [27] Yang-Mills Flows on Nearly Kähler Manifolds and G2-Instantons
    Derek Harland
    Tatiana A. Ivanova
    Olaf Lechtenfeld
    Alexander D. Popov
    Communications in Mathematical Physics, 2010, 300 : 185 - 204
  • [28] Yang-Mills Origin of Gravitational Symmetries
    Anastasiou, A.
    Borsten, L.
    Duff, M. J.
    Hughes, L. J.
    Nagy, S.
    PHYSICAL REVIEW LETTERS, 2014, 113 (23)
  • [29] UNIFIED GRAVITATIONAL AND YANG-MILLS FIELDS
    PANDRES, D
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (05) : 733 - 759
  • [30] YANG-MILLS FORMULATION OF GRAVITATIONAL DYNAMICS
    FAIRCHILD, EE
    PHYSICAL REVIEW D, 1977, 16 (08) : 2438 - 2447