Gravitational and Yang-Mills instantons in holographic RG flows

被引:0
|
作者
Edi Gava
Parinya Karndumri
K. S. Narain
机构
[1] INFN — Sezione di Trieste,
[2] International School for Advanced Studies (SISSA),undefined
[3] The Abdus Salam International Centre for Theoretical Physics,undefined
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
We study various holographic RG flow solutions involving warped asymptotically locally Euclidean (ALE) spaces of AN − 1 type. A two-dimensional RG flow from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six dimensional supergravity, interpolating between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_3} \times {S^3}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS3 × S3 geometries. We also find solutions involving non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces. Both flows are of vev type, driven by a vacuum expectation value of a marginal operator. RG flows in four dimensional field theories are studied in the type IIB and type I′ context. In type IIB theory, the flow interpolates between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS5 × S5 geometries. The field theory interpretation is that of an N = 2 SU(n)N quiver gauge theory flowing to N = 4 SU(n) gauge theory. In type I′ theory the solution describes an RG flow from N = 2 quiver gauge theory with a product gauge group to N = 2 gauge theory in the IR, with gauge group USp(n). The corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_2}}} \right.} $\end{document}, respectively. We also explore more general RG flows, in which both the UV and IR CFTs are N = 2 quiver gauge theories and the corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_M} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document}. Finally, we discuss the matching between the geometric and field theoretic pictures of the flows.
引用
收藏
相关论文
共 50 条
  • [1] Gravitational and Yang-Mills instantons in holographic RG flows
    Gava, Edi
    Karndumri, Parinya
    Narain, K. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (08):
  • [2] Two dimensional RG flows and Yang-Mills instantons
    Gava, Edi
    Karndumri, Parinya
    Narain, K. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [3] Two dimensional RG flows and Yang-Mills instantons
    Edi Gava
    Parinya Karndumri
    K. S. Narain
    Journal of High Energy Physics, 2011
  • [4] Yang-Mills instantons from gravitational instantons
    Oh, John J.
    Park, Chanyong
    Yang, Hyun Seok
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04):
  • [5] YANG-MILLS INSTANTONS ON ALE GRAVITATIONAL INSTANTONS
    KRONHEIMER, PB
    NAKAJIMA, H
    MATHEMATISCHE ANNALEN, 1990, 288 (02) : 263 - 307
  • [6] Yang-Mills instantons from gravitational instantons
    John J. Oh
    Chanyong Park
    Hyun Seok Yang
    Journal of High Energy Physics, 2011
  • [7] Yang-Mills instantons in the gravitational instanton backgrounds
    Kim, HS
    Yoon, YS
    PHYSICS LETTERS B, 2000, 495 (1-2) : 169 - 175
  • [8] Instantons and Yang-Mills Flows on Coset Spaces
    Ivanova, Tatiana A.
    Lechtenfeld, Olaf
    Popov, Alexander D.
    Rahn, Thorsten
    LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (03) : 231 - 247
  • [9] On Yang-Mills instantons over multi-centered gravitational instantons
    Etesi, G
    Hausel, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 275 - 288
  • [10] Yang-Mills instantons with Lorentz violation
    Colladay, D
    McDonald, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) : 3228 - 3238