A PTAS for the Geometric Connected Facility Location Problem

被引:0
|
作者
Flávio K. Miyazawa
Lehilton L. C. Pedrosa
Rafael C. S. Schouery
Renata G. D. de Souza
机构
[1] Universidade Estadual de Campinas,
来源
关键词
Connected facility location problem; Geometric problem; Polynomial-time approximation scheme; Prize-collecting;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Geometric Connected Facility Location Problem (GCFLP): given a set of clients C⊂ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C} \subset \mathbb {R}^{d}$\end{document}, one wants to select a set of locations F⊂ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F \subset \mathbb {R}^{d}$\end{document} where to open facilities, each at a fixed cost f≥0. For each client j∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j \in \mathcal {C}$\end{document}, one has to choose to either connect it to an open facility ϕ(j)∈F paying the Euclidean distance between j and ϕ(j), or pay a given penalty cost π(j). The facilities must also be connected by a tree T, whose cost is Mℓ(T), where M≥1 and ℓ(T) is the total Euclidean length of edges in T. The multiplication by M reflects the fact that interconnecting two facilities is typically more expensive than connecting a client to a facility. The objective is to find a solution with minimum cost. In this paper, we present a Polynomial-Time Approximation Scheme (PTAS) for the two-dimensional GCFLP. Our algorithm also leads to a PTAS for the two-dimensional Geometric Connected k-medians, when f=0, but only k facilities may be opened.
引用
收藏
页码:871 / 892
页数:21
相关论文
共 50 条
  • [31] Connected facility location via random facility sampling and core detouring
    Eisenbrand, Friedrich
    Grandoni, Fabrizio
    Rothvoss, Thomas
    Schafer, Guido
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (08) : 709 - 726
  • [32] The capacitated mobile facility location problem
    Raghavan, S.
    Sahin, Mustafa
    Salman, F. Sibel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (02) : 507 - 520
  • [33] THE FACILITY LOCATION PROBLEM WITH LIMITED DISTANCES
    DREZNER, Z
    MEHREZ, A
    WESOLOWSKY, GO
    [J]. TRANSPORTATION SCIENCE, 1991, 25 (03) : 183 - 187
  • [34] A concentration inequality for the facility location problem
    Silwal, Sandeep
    [J]. OPERATIONS RESEARCH LETTERS, 2022, 50 (02) : 213 - 217
  • [35] A matheuristic for the stochastic facility location problem
    Turkes, Renata
    Sorensen, Kenneth
    Cuervo, Daniel Palhazi
    [J]. JOURNAL OF HEURISTICS, 2021, 27 (04) : 649 - 694
  • [37] Solving the dynamic facility location problem
    Chardaire, P
    Sutter, A
    Costa, MC
    [J]. NETWORKS, 1996, 28 (02) : 117 - 124
  • [38] Review of the hierarchical facility location problem
    Lin J.
    Lin M.
    Wang W.
    Zhang Z.
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (07): : 1121 - 1131
  • [39] A CAPACITATED BOTTLENECK FACILITY LOCATION PROBLEM
    DEARING, PM
    NEWRUCK, FC
    [J]. MANAGEMENT SCIENCE, 1979, 25 (11) : 1093 - 1104
  • [40] The capacity constrained facility location problem
    Aziz, Haris
    Chan, Hau
    Lee, Barton E.
    Parkes, David C.
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2020, 124 : 478 - 490