A PTAS for the Geometric Connected Facility Location Problem

被引:0
|
作者
Flávio K. Miyazawa
Lehilton L. C. Pedrosa
Rafael C. S. Schouery
Renata G. D. de Souza
机构
[1] Universidade Estadual de Campinas,
来源
关键词
Connected facility location problem; Geometric problem; Polynomial-time approximation scheme; Prize-collecting;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Geometric Connected Facility Location Problem (GCFLP): given a set of clients C⊂ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C} \subset \mathbb {R}^{d}$\end{document}, one wants to select a set of locations F⊂ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F \subset \mathbb {R}^{d}$\end{document} where to open facilities, each at a fixed cost f≥0. For each client j∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j \in \mathcal {C}$\end{document}, one has to choose to either connect it to an open facility ϕ(j)∈F paying the Euclidean distance between j and ϕ(j), or pay a given penalty cost π(j). The facilities must also be connected by a tree T, whose cost is Mℓ(T), where M≥1 and ℓ(T) is the total Euclidean length of edges in T. The multiplication by M reflects the fact that interconnecting two facilities is typically more expensive than connecting a client to a facility. The objective is to find a solution with minimum cost. In this paper, we present a Polynomial-Time Approximation Scheme (PTAS) for the two-dimensional GCFLP. Our algorithm also leads to a PTAS for the two-dimensional Geometric Connected k-medians, when f=0, but only k facilities may be opened.
引用
收藏
页码:871 / 892
页数:21
相关论文
共 50 条
  • [1] A PTAS for the Geometric Connected Facility Location Problem
    Miyazawa, Flavio K.
    Pedrosa, Lehilton L. C.
    Schouery, Rafael C. S.
    de Souza, Renata G. D.
    [J]. THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 871 - 892
  • [2] On PTAS for the Geometric Maximum Connected k-Factor Problem
    Gimadi, Edward
    Rykov, Ivan
    Tsidulko, Oxana
    [J]. OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 194 - 205
  • [3] The Online Connected Facility Location Problem
    San Felice, Mario Cesar
    Williamson, David P.
    Lee, Orlando
    [J]. LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 574 - 585
  • [4] The incremental connected facility location problem
    Arulselvan, Ashwin
    Bley, Andreas
    Ljubic, Ivana
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2019, 112
  • [5] Approximate robust optimization for the Connected Facility Location problem
    Bardossy, M. Gisela
    Raghavan, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 210 : 246 - 260
  • [6] Novel Presolving Techniques for the Connected Facility Location Problem
    Tomazic, Alessandro
    [J]. 2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 467 - 472
  • [7] A PTAS for the disk cover problem of geometric objects
    de Rezende, Pedro J.
    Miyazawa, Flavio K.
    Sasaki, Anderson T.
    [J]. OPERATIONS RESEARCH LETTERS, 2013, 41 (05) : 552 - 555
  • [8] Approximate the Lower-Bounded Connected Facility Location Problem
    Han, Lu
    Wu, Chenchen
    Xu, Yicheng
    [J]. COMPUTING AND COMBINATORICS (COCOON 2021), 2021, 13025 : 487 - 498
  • [9] A Randomized -Competitive Algorithm for the Online Connected Facility Location Problem
    San Felice, Mario Cesar
    Williamson, David P.
    Lee, Orlando
    [J]. ALGORITHMICA, 2016, 76 (04) : 1139 - 1157
  • [10] A cutting plane algorithm for the Capacitated Connected Facility Location Problem
    Gollowitzer, Stefan
    Gendron, Bernard
    Ljubic, Ivana
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (03) : 647 - 674