Optimal finite difference schemes for a wave equation

被引:4
|
作者
Mastryukov A.F. [1 ]
机构
[1] Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk
关键词
accuracy; electromagnetic wave; finite-difference; iterations; Laguerre method; linear system of equations; optimal; wave equation;
D O I
10.1134/S1995423916040042
中图分类号
学科分类号
摘要
In this paper, a solution to a two-dimensional wave equation using the Laguerre transform is considered. Optimal parameters of finite difference schemes for this equation are obtained. Numerical values of these optimal parameters are specified. Second-order finite difference schemes with the optimal parameters provide an accuracy of solving the equations close to that provided by a fourth-order scheme. It is shown that using the Laguerre decomposition can reduce the number of optimal parameters in comparison with using the Fourier decomposition. This simplifies the finite difference schemes and decreases the number of calculations, that is, makes the algorithm more efficient. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:299 / 311
页数:12
相关论文
共 50 条
  • [41] Consistency of generalized finite difference schemes for the stochastic HJB equation
    Bonnans, JF
    Zidani, H
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) : 1008 - 1021
  • [42] Nonstandard Finite Difference Schemes for the Black-Scholes Equation
    Ehrhardt, Matthias
    MATHEMATICS OF CONTINUOUS AND DISCRETE DYNAMICAL SYSTEMS, 2014, 618 : 217 - +
  • [43] Two finite difference schemes for the phase field crystal equation
    CAO HaiYan
    SUN ZhiZhong
    ScienceChina(Mathematics), 2015, 58 (11) : 2435 - 2454
  • [44] Finite-difference schemes for the transport equation. I
    Samarskii, AA
    Vabishchevich, PN
    DIFFERENTIAL EQUATIONS, 1998, 34 (12) : 1682 - 1692
  • [45] On the convergence of finite difference schemes for the heat equation with concentrated capacity
    B.S. Jovanovic
    L.G. Vulkov
    Numerische Mathematik, 2001, 89 : 715 - 734
  • [46] Two finite difference schemes for the phase field crystal equation
    HaiYan Cao
    ZhiZhong Sun
    Science China Mathematics, 2015, 58 : 2435 - 2454
  • [47] Spectral analysis of finite difference schemes for convection diffusion equation
    Suman, V. K.
    Sengupta, Tapan K.
    Prasad, C. Jyothi Durga
    Mohan, K. Surya
    Sanwalia, Deepanshu
    COMPUTERS & FLUIDS, 2017, 150 : 95 - 114
  • [48] Lie Symmetry Preservation by Finite Difference Schemes for the Burgers Equation
    Chhay, Marx
    Hamdouni, Aziz
    SYMMETRY-BASEL, 2010, 2 (02): : 868 - 883
  • [49] Explicit and implicit finite difference schemes for fractional Cattaneo equation
    Ghazizadeh, H. R.
    Maerefat, M.
    Azimi, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 7042 - 7057
  • [50] Conservative finite difference schemes for the chiral nonlinear Schrodinger equation
    Ismail, Mohammad S.
    Al-Basyouni, Khalil S.
    Aydin, Ayhan
    BOUNDARY VALUE PROBLEMS, 2015,