Particle-based energetic variational inference

被引:0
|
作者
Yiwei Wang
Jiuhai Chen
Chun Liu
Lulu Kang
机构
[1] Illinois Institute of Technology,Department of Applied Mathematics
来源
Statistics and Computing | 2021年 / 31卷
关键词
KL-divergence; Energetic variational approach; Gaussian mixture model; Kernel function; Implicit-Euler; Variational inference;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new variational inference (VI) framework, called energetic variational inference (EVI). It minimizes the VI objective function based on a prescribed energy-dissipation law. Using the EVI framework, we can derive many existing particle-based variational inference (ParVI) methods, including the popular Stein variational gradient descent (SVGD). More importantly, many new ParVI schemes can be created under this framework. For illustration, we propose a new particle-based EVI scheme, which performs the particle-based approximation of the density first and then uses the approximated density in the variational procedure, or “Approximation-then-Variation” for short. Thanks to this order of approximation and variation, the new scheme can maintain the variational structure at the particle level, and can significantly decrease the KL-divergence in each iteration. Numerical experiments show the proposed method outperforms some existing ParVI methods in terms of fidelity to the target distribution.
引用
下载
收藏
相关论文
共 50 条
  • [21] Sequential Particle-Based Sum-Product Algorithm for Distributed Inference in Wireless Sensor Networks
    Li, Wei
    Yang, Zhen
    Hu, Haifeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (01) : 341 - 348
  • [22] Boundary Detection in Particle-based Fluids
    Sandim, Marcos
    Cedrim, Douglas
    Nonato, Luis Gustavo
    Pagliosa, Paulo
    Paiva, Afonso
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 215 - 224
  • [23] Particle-based platforms for malaria vaccines
    Wu, Yimin
    Narum, David L.
    Fleury, Sylvain
    Jennings, Gary
    Yadava, Anjali
    VACCINE, 2015, 33 (52) : 7518 - 7524
  • [24] Particle-based fluid simulation on the GPU
    Hegeman, Kyle
    Carr, Nathan A.
    Miller, Gavin S. P.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 228 - 235
  • [25] Particle-based mesoscale hydrodynamic techniques
    Noguchi, H.
    Kikuchi, N.
    Gompper, G.
    EPL, 2007, 78 (01)
  • [26] Exploring Particle-Based Caricature Generations
    Phon-Amnuaisuk, Somnuk
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT II, 2011, 252 : 37 - 46
  • [27] Particle-based Cardiac Rhythm Simulation
    Guo, Jiaxiang
    Yang, Cheng
    Han, Jie
    Tang, Jiayu
    Zheng, Mianlun
    Liao, Xiangyun
    Yuan, Zhiyong
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 2072 - 2075
  • [28] A decade of particle-based scientific visualization
    Guido Reina
    Patrick Gralka
    Thomas Ertl
    The European Physical Journal Special Topics, 2019, 227 : 1705 - 1723
  • [29] Visualization of cosmological particle-based datasets
    Navratil, Paul Arthur
    Johnson, Jarrett L.
    Bromm, Volker
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1712 - 1718
  • [30] Particle-based biofilm reactor technology
    Nicolella, C
    van Loosdrecht, MCM
    Heijnen, SJ
    TRENDS IN BIOTECHNOLOGY, 2000, 18 (07) : 312 - 320