Comment on “Non-intersecting Brownian Bridges in the Flat-to-Flat Geometry”

被引:0
|
作者
Jacek Grela
Satya N. Majumdar
Grégory Schehr
机构
[1] Jagiellonian University,Institute of Theoretical Physics
[2] LPTMS,Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589
[3] CNRS,undefined
[4] Univ. Paris-Sud,undefined
[5] Université Paris-Saclay,undefined
[6] Sorbonne Université,undefined
来源
关键词
Conditioned Brownian motions; Rare events; Effective Langevin equation;
D O I
暂无
中图分类号
学科分类号
摘要
This is a comment on our recent paper (Grela et al. in J Stat Phys 183:49, 2021). In this comment we provide an easier derivation of the effective Langevin equation for vicious Brownian bridges in the flat-to-flat geometry. This derivation shows that it is not necessary to invoke the intermediate step of mapping to a Dyson Brownian bridge. The result can be directly derived using the Karlin–McGregor formula.
引用
收藏
相关论文
共 43 条
  • [1] Comment on "Non-intersecting Brownian Bridges in the Flat-to-Flat Geometry"
    Grela, Jacek
    Majumdar, Satya N. N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (02)
  • [2] Non-intersecting Brownian Bridges in the Flat-to-Flat Geometry
    Jacek Grela
    Satya N. Majumdar
    Grégory Schehr
    Journal of Statistical Physics, 2021, 183
  • [3] Non-intersecting Brownian Bridges in the Flat-to-Flat Geometry
    Grela, Jacek
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
  • [4] Restricted maximum of non-intersecting Brownian bridges
    Yalanda, Yamit
    Zalduendo, Nicolas
    ESAIM-PROBABILITY AND STATISTICS, 2024, 28 : 258 - 273
  • [5] Non-intersecting Brownian bridges and the Laguerre Orthogonal Ensemble
    Nguyen, Gia Bao
    Remenik, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2005 - 2029
  • [6] Local Statistics and Concentration for Non-intersecting Brownian Bridges with Smooth Boundary DataLocal Statistics and Concentration for Non-intersecting Brownian BridgesA. Aggarwal, J. Huang
    Amol Aggarwal
    Jiaoyang Huang
    Communications in Mathematical Physics, 2025, 406 (3)
  • [7] Critical Behavior of Non-intersecting Brownian Motions
    Tom Claeys
    Thorsten Neuschel
    Martin Venker
    Communications in Mathematical Physics, 2020, 378 : 1501 - 1537
  • [8] A PDE for non-intersecting Brownian motions and applications
    Adler, Mark
    Delepine, Jonathan
    van Moerbeke, Pierre
    Vanhaecke, Pol
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1715 - 1755
  • [9] Extreme statistics of non-intersecting Brownian paths
    Gia Bao Nguyen
    Remenik, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [10] Critical Behavior of Non-intersecting Brownian Motions
    Claeys, Tom
    Neuschel, Thorsten
    Venker, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) : 1501 - 1537