Some characterizations of the disc by properties of isoptic triangles

被引:0
|
作者
Rafael I. Ayala-Figueroa
Iván González-García
Jesús Jerónimo-Castro
Francisco G. Jimenez-Lopez
机构
[1] Instituto Tecnológico de Mexicali,Departamento de Eléctrica
[2] Universidad Autónoma de Querétaro,Electrónica, Tecnológico Nacional de México
来源
Aequationes mathematicae | 2024年 / 98卷
关键词
52A10;
D O I
暂无
中图分类号
学科分类号
摘要
The main result in this article is the following: Let K⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^2$$\end{document} be a regular convex body and let α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, be three angles such that K has α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-chords, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-chords, and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-chords of constant length and α+β+θ=π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +\beta +\theta =\pi $$\end{document}, then K is a disc. We also prove another characterization of the disc with respect to properties of its (α,β,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta ,\theta )$$\end{document}-circumscribed triangles.
引用
收藏
页码:591 / 602
页数:11
相关论文
共 50 条
  • [41] 104.36 Some results on perspective triangles
    Vu, Thanh Tung
    Vu, Quoc My
    MATHEMATICAL GAZETTE, 2020, 104 (561): : 535 - 539
  • [42] A Characterization of the Equilateral Triangles and Some Consequences
    John Conway
    The Mathematical Intelligencer, 2014, 36 : 1 - 2
  • [43] SOME TRAJECTORIES DETERMINED BY ISOSCELES TRIANGLES
    Kseniya, Gorskaya
    Dania, Kopteva
    Daniil, Mikurov
    Mudebaev, Yerkin Amirzhanovich
    Temirkhanov, Adilbek Timurovich
    Mukhambetov, Kazbek Batyrbekovich
    Hristova, Irina
    Ivanova, Radina
    Stefanova, Lilly
    MATHEMATICS AND INFORMATICS, 2016, 59 (06): : 572 - 588
  • [44] A Characterization of the Equilateral Triangles and Some Consequences
    Conway, John
    MATHEMATICAL INTELLIGENCER, 2014, 36 (02): : 1 - 2
  • [45] Some remarks on rational right triangles
    Chahal, Jasbir S.
    EXPOSITIONES MATHEMATICAE, 2024, 42 (06)
  • [46] SOME SPORADIC CHARACTERIZATIONS
    DAVIS, SL
    SOLOMON, R
    COMMUNICATIONS IN ALGEBRA, 1981, 9 (17) : 1725 - 1742
  • [47] SOME CHARACTERIZATIONS OF REFLEXIVITY
    SINGER, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) : 166 - 168
  • [48] SOME CHARACTERIZATIONS OF NORMALITY
    CACOULLOS, T
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1967, 29 (DEC): : 399 - 404
  • [49] SOME CHARACTERIZATIONS OF ELLIPSOID
    BURTON, GR
    ISRAEL JOURNAL OF MATHEMATICS, 1977, 28 (04) : 339 - 349
  • [50] SOME CHARACTERIZATIONS OF SMOOTHNESS
    TANIMOTO, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 23 (04): : 695 - 706