Some characterizations of the disc by properties of isoptic triangles

被引:0
|
作者
Rafael I. Ayala-Figueroa
Iván González-García
Jesús Jerónimo-Castro
Francisco G. Jimenez-Lopez
机构
[1] Instituto Tecnológico de Mexicali,Departamento de Eléctrica
[2] Universidad Autónoma de Querétaro,Electrónica, Tecnológico Nacional de México
来源
Aequationes mathematicae | 2024年 / 98卷
关键词
52A10;
D O I
暂无
中图分类号
学科分类号
摘要
The main result in this article is the following: Let K⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^2$$\end{document} be a regular convex body and let α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, be three angles such that K has α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-chords, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-chords, and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-chords of constant length and α+β+θ=π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +\beta +\theta =\pi $$\end{document}, then K is a disc. We also prove another characterization of the disc with respect to properties of its (α,β,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta ,\theta )$$\end{document}-circumscribed triangles.
引用
收藏
页码:591 / 602
页数:11
相关论文
共 50 条
  • [1] Some characterizations of the disc by properties of isoptic triangles
    Ayala-Figueroa, Rafael I.
    Gonzalez-Garcia, Ivan
    Jeronimo-Castro, Jesus
    Jimenez-Lopez, Francisco G.
    AEQUATIONES MATHEMATICAE, 2024, 98 (02) : 591 - 602
  • [2] Some Properties of the Garcia Reflection Triangles
    Dalcin, Mario
    Kiss, Sandor Nagydobai
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2021, 25 (01): : 119 - 126
  • [3] Some Characterizations of the Properties ■ and LB∞
    Thuan Quang THAI Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (04) : 613 - 628
  • [4] Some Characterizations of the Properties ■~∞ and LB∞
    Thuan Quang THAI
    Acta Mathematicae Applicatae Sinica(English Series), 2004, (04) : 613 - 628
  • [5] Translation-Like Isoptic Surfaces and Angle Sums of Translation Triangles in Nil Geometry
    Csima, Geza
    Szirmai, Jeno
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [6] Some properties of generalized Pascal squares and triangles
    Ollerton, RL
    Shannon, AG
    FIBONACCI QUARTERLY, 1998, 36 (02): : 98 - 109
  • [7] Some remarkable lines of triangles in real normed spaces and characterizations of inner product structures
    Claudi Alsina
    Piedad Guijarro
    Maria S. Tomás
    aequationes mathematicae, 1997, 54 (1-2) : 234 - 241
  • [8] Some properties of combinatorial triangles related to Horadam polynomials
    Wang, Yu
    Zhang, Jinyang
    Liang, Huyile
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (17): : 2967 - 2983
  • [9] Characterizations of Some Transversality-Type Properties
    Apostolov, Stoyan
    Bivas, Mira
    Ribarska, Nadezhda
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (03) : 1041 - 1060
  • [10] Some Characterizations and Properties of a New Partial Order
    Liu, Xiaoji
    Gui, Fang
    JOURNAL OF MATHEMATICS, 2020, 2020