Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement

被引:0
|
作者
Philip Teare
Michael Fishman
Oshra Benzaquen
Eyal Toledano
Eldad Elnekave
机构
[1] Zebra Medical Vision LTD,
[2] Beth Israel Deaconess Medical Center,undefined
[3] Rabin Medical Center,undefined
来源
关键词
Deep learning; Machine learning; Convolutional neural networks; Mammography;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
  • [41] Detection and Segmentation of Rice Diseases Using Deep Convolutional Neural Networks
    Rai C.K.
    Pahuja R.
    SN Computer Science, 4 (5)
  • [42] Spectrographic Seizure Detection Using Deep Learning With Convolutional Neural Networks
    Yan, Peter
    Wang, Fei
    Grinspan, Zachary
    NEUROLOGY, 2018, 90
  • [43] Automatic mass detection in mammograms using deep convolutional neural networks
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Yap, Moi Hoon
    Marti, Robert
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [44] Accurate lithography hotspot detection using deep convolutional neural networks
    Shin, Moojoon
    Lee, Jee-Hyong
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (04):
  • [45] Driver behavior detection and classification using deep convolutional neural networks
    Shahverdy, Mohammad
    Fathy, Mahmood
    Berangi, Reza
    Sabokrou, Mohammad
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [46] Driver behavior detection and classification using deep convolutional neural networks
    Shahverdy, Mohammad
    Fathy, Mahmood
    Berangi, Reza
    Sabokrou, Mohammad
    Expert Systems with Applications, 2020, 149
  • [47] Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5159 - 5178
  • [48] A Comparative Study for Contour Detection Using Deep Convolutional Neural Networks
    Liu, Na
    Yuan, Ye
    Wan, Lihong
    Huo, Hong
    Fang, Tao
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 203 - 208
  • [49] Deep Tessellated Retinal Image Detection using Convolutional Neural Networks
    Lyu, Xingzheng
    Li, Hai
    Zhen, Yi
    Ji, Xin
    Zhang, Sanyuan
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 676 - 680
  • [50] Violence Detection in Videos using Deep Recurrent and Convolutional Neural Networks
    Traore, Abdarahmane
    Akhloufi, Moulay A.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 154 - 159