Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement

被引:0
|
作者
Philip Teare
Michael Fishman
Oshra Benzaquen
Eyal Toledano
Eldad Elnekave
机构
[1] Zebra Medical Vision LTD,
[2] Beth Israel Deaconess Medical Center,undefined
[3] Rabin Medical Center,undefined
来源
关键词
Deep learning; Machine learning; Convolutional neural networks; Mammography;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
  • [1] Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement
    Teare, Philip
    Fishman, Michael
    Benzaquen, Oshra
    Toledano, Eyal
    Elnekave, Eldad
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 499 - 505
  • [2] Abnormality Detection in Mammography using Deep Convolutional Neural Networks
    Xi, Pengcheng
    Shu, Chang
    Goubran, Rafik
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 354 - 359
  • [3] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [4] Transfer Learning in Deep Convolutional Neural Networks for Detection of Architectural Distortion in Digital Mammography
    Costa, Arthur C.
    Oliveira, Helder C. R.
    Borges, Lucas R.
    Vieira, Marcelo A. C.
    15TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI2020), 2020, 11513
  • [5] Tongue Segmentation and Color Classification Using Deep Convolutional Neural Networks
    Yan, Bo
    Zhang, Sheng
    Yang, Zijiang
    Su, Hongyi
    Zheng, Hong
    MATHEMATICS, 2022, 10 (22)
  • [6] Breast Cancer Detection in Mammography Images Using Deep Convolutional Neural Networks and Fuzzy Ensemble Modeling Techniques
    Altameem, Ayman
    Mahanty, Chandrakanta
    Poonia, Ramesh Chandra
    Saudagar, Abdul Khader Jilani
    Kumar, Raghvendra
    DIAGNOSTICS, 2022, 12 (08)
  • [7] Fusion of Deep Convolutional Neural Networks for Microaneurysm Detection in Color Fundus Images
    Harangi, Balazs
    Toth, Janos
    Hajdu, Andras
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3705 - 3708
  • [8] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [9] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [10] Robotic Grasp Detection using Deep Convolutional Neural Networks
    Kumra, Sulabh
    Kanan, Christopher
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 769 - 776