Gaussian curvature on hyperelliptic Riemann surfaces

被引:0
|
作者
ABEL CASTORENA
机构
[1] (Universidad Nacional Autónoma de México Campus Morelia),Centro de Ciencias Matemáticas
来源
关键词
Hyperelliptic curve; Weierstrass points; Gaussian curvature.; Primary: 14H55; Secondary: 30F30.;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a compact Riemann surface of genus g ≥ 1, ω1, ..., ωg be a basis of holomorphic 1-forms on C and let H=(hij)i,j=1g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H=(h_{ij})_{i,j=1}^g$\end{document} be a positive definite Hermitian matrix. It is well known that the metric defined as dsH2=∑i,j=1ghijωi⊗ωj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {d}s_H^2=\sum _{i,j=1}^gh_{ij}\omega _i\otimes \overline {\omega _j}$\end{document} is a Kähler metric on C of non-positive curvature. Let KH : C → ℝ be the Gaussian curvature of this metric. When C is hyperelliptic we show that the hyperelliptic Weierstrass points are non-degenerated critical points of KH of Morse index +2. In the particular case when H is the g × g identity matrix, we give a criteria to find local minima for KH and we give examples of hyperelliptic curves where the curvature function KH is a Morse function.
引用
收藏
页码:155 / 167
页数:12
相关论文
共 50 条