Machine tools, as the extensively used basic equipment of manufacturing industry, are
characterized by intensive and inefficient energy consumption. With the launch and implementation of ISO 14955-1, energy efficiency has become an important criterion for machine tool evaluation. However, most ongoing research on energy efficiency evaluation of machine tools emphasizes on workpiece material removal energy efficiency and rarely considers energy consumption needed to ensure machining accuracy and accuracy consistency, especially energy consumption for thermal stability control of machine tools. In light of this, an exergy analysis based approach is presented to assess the comprehensive energy efficiency of machine tools, including energy consumption for material removal and thermal stability control. The key performance indexes of exergy efficiency, exergy destruction, and specific exergy consumption are analyzed. The feasibility of the proposed approach was demonstrated by a case study, in which the comprehensive energy efficiency of a machine tool was found to be 21.57% instead of 14.38% of material removal energy efficiency. The proposed method is more effective to evaluate the comprehensive energy efficiency, to support designers to design high-efficient machine tool and users to operate machine tool for green and precision machining.