Nonlinear Second Order Delay Dynamic Equations on Time Scales: New Oscillatory Criteria

被引:0
|
作者
Said R. Grace
G. N. Chhatria
Syed Abbas
机构
[1] Cairo University,Department of Engineering Mathematics, Faculty of Engineering
[2] Sambalpur University,Department of Mathematics
[3] Indian Institute of Technology,School of Mathematical and Statistical Sciences
关键词
Second order dynamic equations; Delay; Monotonic properties; Oscillation; 34C10; 34K11; 34N05; 39A10;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we present some new oscillation results for the second order nonlinear delay dynamic equation of the form r(θ)(zΔ(θ))αΔ+q(θ)zν(ω(θ))=0forθ∈T0=[θ0,∞)∩T.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( r(\theta )(z^{\Delta }(\theta ))^{\alpha }\right) ^{\Delta } +q(\theta )z^{\nu }(\omega (\theta ))=0\;\text {for}\;\theta \in {\mathbb {T}}_{0}=[\theta _{0},\infty )\cap {\mathbb {T}}. \end{aligned}$$\end{document}We derive new monotonic properties of the nonoscillatory solutions and utilizing them to linearize the considered equation. The presented results are verified by some illustrative examples.
引用
收藏
相关论文
共 50 条
  • [21] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [23] Oscillation Criteria for Second-Order Nonlinear Dynamic Equations on Time Scales
    Zhang, Shao-Yan
    Wang, Qi-Ru
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, BG
    Zhu, SL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 599 - 609
  • [25] Oscillation criteria for second-order nonlinear dynamic equations on time scales
    Erbe, L
    Peterson, A
    Saker, SH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 701 - 714
  • [26] Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Agwa, H. A.
    Khodier, A. M. M.
    Hassan, Heba A.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
  • [27] OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
    Thandapani, E.
    Piramanantham, V.
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (01): : 109 - 122
  • [28] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, Quanxin
    Gao, Li
    Wang, Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2342 - 2348
  • [29] Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Song, X.
    Zhang, Q. X.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 827 - 830
  • [30] Oscillation Criteria for Second-order Nonlinear Dynamic Equations on Time Scales
    Cao, Fengjuan
    Han, Zhenlai
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 139 - 142