Particle detection and size recognition based on defocused particle images: a comparison of a deterministic algorithm and a deep neural network

被引:0
|
作者
Sebastian Sachs
Manuel Ratz
Patrick Mäder
Jörg König
Christian Cierpka
机构
[1] Technische Universität Ilmenau,Institute of Thermodynamics and Fluid Mechanics
[2] Technische Universität Ilmenau,Data
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The systematic manipulation of components of multimodal particle solutions is a key for the design of modern industrial products and pharmaceuticals with highly customized properties. In order to optimize innovative particle separation devices on microfluidic scales, a particle size recognition with simultaneous volumetric position determination is essential. In the present study, the astigmatism particle tracking velocimetry is extended by a deterministic algorithm and a deep neural network (DNN) to include size classification of particles of multimodal size distribution. Without any adaptation of the existing measurement setup, a reliable classification of bimodal particle solutions in the size range of 1.14μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.14~\upmu \hbox {m}$$\end{document}–5.03μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.03~\upmu \hbox {m}$$\end{document} is demonstrated with a precision of up to 99.9 %. Concurrently, the high detection rate of the particles, suspended in a laminar fluid flow, is quantified by a recall of 99.0 %. By extracting particle images from the experimentally acquired images and placing them on a synthetic background, semi-synthetic images with consistent ground truth are generated. These contain labeled overlapping particle images that are correctly detected and classified by the DNN. The study is complemented by employing the presented algorithms for simultaneous size recognition of up to four particle species with a particle diameter in between 1.14μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.14~\upmu \hbox {m}$$\end{document} and 5.03μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.03~\upmu \hbox {m}$$\end{document}. With the very high precision of up to 99.3 % at a recall of 94.8 %, the applicability to classify multimodal particle mixtures even in dense solutions is confirmed. The present contribution thus paves the way for quantitative evaluation of microfluidic separation and mixing processes.
引用
收藏
相关论文
共 50 条
  • [31] A combination of Genetic Algorithm, Particle Swarm Optimization and Neural Network for palmprint recognition
    Adem Alpaslan Altun
    Neural Computing and Applications, 2013, 22 : 27 - 33
  • [32] Estimating Ore Particle Size Distribution using a Deep Convolutional Neural Network
    Olivier, Laurentz E.
    Maritz, Michael G.
    Craig, Ian K.
    IFAC PAPERSONLINE, 2020, 53 (02): : 12038 - 12043
  • [33] Energy calibration and particle recognition by a neural network
    Manno, CMI
    Tudisco, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 443 (2-3): : 503 - 509
  • [34] A Design on Edge Detection Template of Cellular Neural Network Based on Particle Swarm Optimization Algorithm
    Zhao, Guo-Min
    Li, Guo-Dong
    INTERNATIONAL SYMPOSIUM ON FUZZY SYSTEMS, KNOWLEDGE DISCOVERY AND NATURAL COMPUTATION (FSKDNC 2014), 2014, : 364 - 373
  • [35] Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images
    Eisuke Ito
    Takaaki Sato
    Daisuke Sano
    Etsuko Utagawa
    Tsuyoshi Kato
    Food and Environmental Virology, 2018, 10 : 201 - 208
  • [36] Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images
    Ito, Eisuke
    Sato, Takaaki
    Sano, Daisuke
    Utagawa, Etsuko
    Kato, Tsuyoshi
    FOOD AND ENVIRONMENTAL VIROLOGY, 2018, 10 (02) : 201 - 208
  • [37] A Vehicle Recognition Algorithm Based on Deep Convolution Neural Network
    Yang, Yang
    TRAITEMENT DU SIGNAL, 2020, 37 (04) : 647 - 653
  • [38] A vehicle recognition algorithm based on deep convolution neural network
    Yang Y.
    Traitement du Signal, 2020, 37 (04): : 647 - 653
  • [39] Recognition of Altered Rock Based on Improved Particle Swarm Neural Network
    Zhan, Yunjun
    Wu, Yanyan
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 149 - 155
  • [40] Classification of Coarse Aggregate Particle Size Based on Deep Residual Network
    Sun, Zhaoyun
    Li, Yuxuan
    Pei, Lili
    Li, Wei
    Hao, Xueli
    SYMMETRY-BASEL, 2022, 14 (02):