Periodic Orbits and Semiclassical Form Factor in Barrier Billiards

被引:0
|
作者
O. Giraud
机构
[1] Université Paul Sabatier,Laboratoire de Physique théorique, UMR 5152 du CNRS
来源
关键词
Neural Network; Statistical Physic; Complex System; Periodic Orbit; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result [inline-graphic not available: see fulltext] obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of [inline-graphic not available: see fulltext] obtained previously in the case of Veech billiards.
引用
收藏
页码:183 / 201
页数:18
相关论文
共 50 条
  • [1] Periodic orbits and semiclassical form factor in barrier billiards
    Giraud, O
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 183 - 201
  • [2] PERIODIC-ORBITS AND SEMICLASSICAL QUANTIZATION OF DISPERSING BILLIARDS
    HARAYAMA, T
    SHUDO, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17): : 4595 - 4611
  • [3] SEMICLASSICAL QUANTIZATION AND PERIODIC-ORBITS OF DISPERSING BILLIARDS
    HARAYAMA, T
    SHUDO, A
    SHIMIZU, Y
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1994, (116): : 259 - 265
  • [4] Marginally Unstable Periodic Orbits in Semiclassical Mushroom Billiards
    Andreasen, Jonathan
    Cao, Hui
    Wiersig, Jan
    Motter, Adilson E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (15)
  • [5] Birkhoff normal form and twist coefficients of periodic orbits of billiards*
    Jin, Xin
    Zhang, Pengfei
    NONLINEARITY, 2022, 35 (08) : 3907 - 3943
  • [6] Periodic orbits in magnetic billiards
    L.G.G.V. Dias da Silva
    M.A.M. de Aguiar
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 16 : 719 - 728
  • [7] Periodic orbits in magnetic billiards
    da Silva, LGGVD
    de Aguiar, MAM
    EUROPEAN PHYSICAL JOURNAL B, 2000, 16 (04): : 719 - 728
  • [8] Periodic orbits in polygonal billiards
    Biswas, D
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 487 - 501
  • [9] Periodic orbits in polygonal billiards
    Debabrata Biswas
    Pramana, 1997, 48 : 487 - 501
  • [10] PERIODIC-ORBITS IN TRIANGULAR BILLIARDS
    RUIJGROK, TW
    ACTA PHYSICA POLONICA B, 1991, 22 (11-12): : 955 - 981