A note on estimating the bent line quantile regression model

被引:0
|
作者
Yanyang Yan
Feipeng Zhang
Xiaoying Zhou
机构
[1] Hunan University,School of Finance and Statistics
来源
Computational Statistics | 2017年 / 32卷
关键词
Quantile regression; Change-point; Linearization technique;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers a new estimating method for the bent line quantile regression model. By a simple linearization technique, the proposed method can simultaneously obtain the estimates of the regression coefficients and the change-point location. Moreover, it can be readily implemented by current software. Simulation studies demonstrate that the proposed method has good finite sample performance. Two empirical applications are also presented to illustrate the method.
引用
收藏
页码:611 / 630
页数:19
相关论文
共 50 条
  • [21] Exports and profitability: a note from quantile regression approach
    Huong Vu
    Holmes, Mark
    Lim, Steven
    Tuyen Tran
    [J]. APPLIED ECONOMICS LETTERS, 2014, 21 (06) : 442 - 445
  • [22] A note on the use of quantile regression in beta convergence analysis
    Laurini, Marcio
    [J]. ECONOMICS BULLETIN, 2007, 3
  • [23] A NOTE ON ESTIMATING THE VARIANCE OF THE REGRESSION ESTIMATOR
    CHAUDHURI, A
    [J]. BIOMETRIKA, 1992, 79 (01) : 217 - 218
  • [24] Dynamic Network Quantile Regression Model
    Xu, Xiu
    Wang, Weining
    Shin, Yongcheol
    Zheng, Chaowen
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 407 - 421
  • [25] Parametric Quantile Beta Regression Model
    Bourguignon, Marcelo
    Gallardo, Diego I.
    Saulo, Helton
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2024, 92 (01) : 106 - 129
  • [26] Flexible Model Aggregation for Quantile Regression
    Fakoor, Rasool
    Kim, Taesup
    Mueller, Jonas
    Smola, Alexander J.
    Tibshirani, Ryan J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [27] Flexible parametric quantile regression model
    Su, Steve
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 635 - 650
  • [28] Flexible parametric quantile regression model
    Steve Su
    [J]. Statistics and Computing, 2015, 25 : 635 - 650
  • [29] A new quantile regression forecasting model
    Huarng, Kun-Huang
    Yu, Tiffany Hui-Kuang
    [J]. JOURNAL OF BUSINESS RESEARCH, 2014, 67 (05) : 779 - 784
  • [30] FUNCTIONAL RESPONSE QUANTILE REGRESSION MODEL
    Zhou, Xingcai
    Kong, Dehan
    Kashlak, A. B.
    Kong, Linglong
    Karunamuni, R.
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2023, 33 (04) : 2643 - 2667