Classification of nonnegative solutions to Schrödinger equation with logarithmic nonlinearity

被引:0
|
作者
Shaolong Peng
机构
[1] Tsinghua University,Department of Mathematics
关键词
Higher-order fractional Laplacians; schrödinger equation; logarithmic nonlinearity; super poly-harmonic properties; classification of nonnegative solutions; Moving spheres; Primary 35B53 Secondary 35B06; 35J30; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the physically interesting static Schrödinger equation with logarithmic nonlinearity: (-Δ)su(x)=c11|·|σ∗log(1+up1)uq1(x)+c2log(1+up2(x))uq2(x),inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^{s}u(x)= & {} c_1\left( \frac{1}{|\cdot |^{\sigma }}*\log (1+u^{p_1})\right) u^{q_1}(x)\\{} & {} \quad + \, c_{2}\log (1+u^{p_{2}}(x))u^{q_{2}}(x), \quad \text {in} \quad {\mathbb {R}}^{n}, \end{aligned}$$\end{document}involving higher-order or higher-order fractional Laplacians, where n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, 0<s:=m+α2<n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s:=m+\frac{\alpha }{2}<\frac{n}{2}$$\end{document}, m≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0$$\end{document} is an integer, 0<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 2$$\end{document}, 0<σ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\sigma <n$$\end{document}, 0<p1≤2n-σn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p_1\le \frac{2n-\sigma }{n-2s}$$\end{document}, 0<q1≤n+2s-σn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q_1\le \frac{n+2s-\sigma }{n-2s}$$\end{document}, q2≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_2\ge 0$$\end{document}, p2>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2>1$$\end{document} and 1<p2+q2<n+2sn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_{2}+q_2<\frac{n+2s}{n-2s}$$\end{document} if α=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =2$$\end{document}, p2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2>0$$\end{document} and 0<p2+q2<n+2sn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p_{2}+q_2<\frac{n+2s}{n-2s}$$\end{document} if 0<α<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <2$$\end{document}. We first prove the super poly-harmonic properties of nonnegative classical solutions to the above PDEs and then derive the equivalence between the PDEs and the corresponding integral equation. Finally, we derive the explicit forms for positive solution u in the critical case and the non-existence of non-trivial nonnegative solutions in the subcritical cases via the method of moving spheres in integral form. In other words, we obtain the classification results of nonnegative classical solutions for the above PDEs equation.
引用
收藏
相关论文
共 50 条
  • [41] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Saima Arshed
    Ghazala Akram
    Maasoomah Sadaf
    Andleeb Ul Nabi
    Ahmed S. M. Alzaidi
    Optical and Quantum Electronics, 2024, 56
  • [42] Solutions of perturbed Schrödinger equations with critical nonlinearity
    Yanheng Ding
    Fanghua Lin
    Calculus of Variations and Partial Differential Equations, 2007, 30 : 231 - 249
  • [43] Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
    Yunting Li
    Yaqiong Liu
    Yunhui Yi
    Boundary Value Problems, 2021
  • [44] Qualitative analysis on logarithmic Schrödinger equation with general potential
    Chengxiang Zhang
    Luyu Zhang
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [45] Multi-bump positive solutions for a logarithmic Schr?dinger equation with deepening potential well
    Claudianor O.Alves
    Chao Ji
    Science China(Mathematics), 2022, 65 (08) : 1577 - 1598
  • [46] Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelmann category
    Alves, Claudianor O.
    da Silva, Ismael S.
    ANALYSIS AND APPLICATIONS, 2023, 21 (06) : 1477 - 1516
  • [47] Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well
    Claudianor O. Alves
    Chao Ji
    Science China Mathematics, 2022, 65 : 1577 - 1598
  • [48] Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods
    Claudianor O. Alves
    Chao Ji
    Israel Journal of Mathematics, 2024, 259 : 835 - 885
  • [49] Solutions of the Schrödinger equation in a Hilbert space
    Alexander Boichuk
    Oleksander Pokutnyi
    Boundary Value Problems, 2014
  • [50] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,