Classification of nonnegative solutions to Schrödinger equation with logarithmic nonlinearity

被引:0
|
作者
Shaolong Peng
机构
[1] Tsinghua University,Department of Mathematics
关键词
Higher-order fractional Laplacians; schrödinger equation; logarithmic nonlinearity; super poly-harmonic properties; classification of nonnegative solutions; Moving spheres; Primary 35B53 Secondary 35B06; 35J30; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the physically interesting static Schrödinger equation with logarithmic nonlinearity: (-Δ)su(x)=c11|·|σ∗log(1+up1)uq1(x)+c2log(1+up2(x))uq2(x),inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^{s}u(x)= & {} c_1\left( \frac{1}{|\cdot |^{\sigma }}*\log (1+u^{p_1})\right) u^{q_1}(x)\\{} & {} \quad + \, c_{2}\log (1+u^{p_{2}}(x))u^{q_{2}}(x), \quad \text {in} \quad {\mathbb {R}}^{n}, \end{aligned}$$\end{document}involving higher-order or higher-order fractional Laplacians, where n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, 0<s:=m+α2<n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s:=m+\frac{\alpha }{2}<\frac{n}{2}$$\end{document}, m≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0$$\end{document} is an integer, 0<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 2$$\end{document}, 0<σ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\sigma <n$$\end{document}, 0<p1≤2n-σn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p_1\le \frac{2n-\sigma }{n-2s}$$\end{document}, 0<q1≤n+2s-σn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q_1\le \frac{n+2s-\sigma }{n-2s}$$\end{document}, q2≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_2\ge 0$$\end{document}, p2>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2>1$$\end{document} and 1<p2+q2<n+2sn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_{2}+q_2<\frac{n+2s}{n-2s}$$\end{document} if α=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =2$$\end{document}, p2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2>0$$\end{document} and 0<p2+q2<n+2sn-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p_{2}+q_2<\frac{n+2s}{n-2s}$$\end{document} if 0<α<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <2$$\end{document}. We first prove the super poly-harmonic properties of nonnegative classical solutions to the above PDEs and then derive the equivalence between the PDEs and the corresponding integral equation. Finally, we derive the explicit forms for positive solution u in the critical case and the non-existence of non-trivial nonnegative solutions in the subcritical cases via the method of moving spheres in integral form. In other words, we obtain the classification results of nonnegative classical solutions for the above PDEs equation.
引用
收藏
相关论文
共 50 条