Low-rank tensor completion by Riemannian optimization

被引:0
|
作者
Daniel Kressner
Michael Steinlechner
Bart Vandereycken
机构
[1] École Polytechnique Fédérale de Lausanne,MATHICSE
[2] Princeton University,ANCHP, Section de Mathématiques
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Tensors; Tucker decomposition; Riemannian optimization; Low-rank approximation; High-dimensionality; Reconstruction; 65F99; 15A69; 65K05; 58C05;
D O I
暂无
中图分类号
学科分类号
摘要
In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to efficient implementation, our algorithm scales linearly in the size of the tensor. Examples with synthetic data demonstrate good recovery even if the vast majority of the entries are unknown. We illustrate the use of the developed algorithm for the recovery of multidimensional images and for the approximation of multivariate functions.
引用
收藏
页码:447 / 468
页数:21
相关论文
共 50 条
  • [32] Tensor Completion via Nonlocal Low-Rank Regularization
    Xie, Ting
    Li, Shutao
    Fang, Leyuan
    Liu, Licheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2344 - 2354
  • [33] Robust approximations of low-rank minimization for tensor completion
    Gao, Shangqi
    Zhuang, Xiahai
    [J]. NEUROCOMPUTING, 2020, 379 : 319 - 333
  • [34] ON THE RELAXATION OF ORTHOGONAL TENSOR RANK AND ITS NONCONVEX RIEMANNIAN OPTIMIZATION FOR TENSOR COMPLETION
    Ozawa, Keisuke
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3628 - 3632
  • [35] AUTOMATIC DIFFERENTIATION FOR RIEMANNIAN OPTIMIZATION ON LOW-RANK MATRIX AND TENSOR-TRAIN MANIFOLDS
    NOVIKOV, A. L. E. X. A. N. D. E. R.
    RAKHUBA, M. A. X. I. M.
    OSELEDETS, I. V. A. N.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A843 - A869
  • [36] Robust Low-Rank Tensor Completion Based on Tensor Ring Rank via,&epsilon
    Li, Xiao Peng
    So, Hing Cheung
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3685 - 3698
  • [37] Adaptive Rank Estimation Based Tensor Factorization Algorithm for Low-Rank Tensor Completion
    Liu, Han
    Liu, Jing
    Su, Liyu
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 3444 - 3449
  • [38] Low-Rank Tensor Completion by Sum of Tensor Nuclear Norm Minimization
    Su, Yaru
    Wu, Xiaohui
    Liu, Wenxi
    [J]. IEEE ACCESS, 2019, 7 : 134943 - 134953
  • [39] A Riemannian rank-adaptive method for low-rank optimization
    Zhou, Guifang
    Huang, Wen
    Gallivan, Kyle A.
    Van Dooren, Paul
    Absil, Pierre-Antoine
    [J]. NEUROCOMPUTING, 2016, 192 : 72 - 80
  • [40] Low-rank optimization for distance matrix completion
    Mishra, B.
    Meyer, G.
    Sepulchre, R.
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4455 - 4460