Plakoglobin is a mechanoresponsive regulator of naive pluripotency

被引:0
|
作者
Timo N. Kohler
Joachim De Jonghe
Anna L. Ellermann
Ayaka Yanagida
Michael Herger
Erin M. Slatery
Antonia Weberling
Clara Munger
Katrin Fischer
Carla Mulas
Alex Winkel
Connor Ross
Sophie Bergmann
Kristian Franze
Kevin Chalut
Jennifer Nichols
Thorsten E. Boroviak
Florian Hollfelder
机构
[1] University of Cambridge,Department of Biochemistry
[2] University of Cambridge,Wellcome Trust – Medical Research Council Stem Cell Institute
[3] Jeffrey Cheah Biomedical Centre,Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences
[4] The University of Tokyo,Stem Cell Therapy Laboratory, Advanced Research Institute
[5] Tokyo Medical and Dental University,Department of Physiology, Development and Neuroscience
[6] University of Cambridge,Centre for Trophoblast Research
[7] University of Cambridge,Randall Centre for Cell and Molecular Biophysics
[8] King’s College London,MRC Human Genetics Unit, Institute of Genetics and Cancer
[9] The University of Edinburgh,Institute of Medical Physics
[10] Friedrich-Alexander-Universität Erlangen-Nürnberg,Altos Labs
[11] Max-Planck-Zentrum für Physik und Medizin,undefined
[12] Cambridge Institute of Science,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos – further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
引用
收藏
相关论文
共 50 条
  • [31] Improved Sendai viral system for reprogramming to naive pluripotency
    Kunitomi, Akira
    Hirohata, Ryoko
    Arreola, Vanessa
    Osawa, Mitsujiro
    Kato, Tomoaki M.
    Nomura, Masaki
    Kawaguchi, Jitsutaro
    Hara, Hiroto
    Kusano, Kohji
    Takashima, Yasuhiro
    Takahashi, Kazutoshi
    Fukuda, Keiichi
    Takasu, Naoko
    Yamanaka, Shinya
    CELL REPORTS METHODS, 2022, 2 (11):
  • [32] Network Features and Dynamical Landscape of Naive and Primed Pluripotency
    Pfeuty, Benjamin
    Kress, Clemence
    Pain, Bertrand
    BIOPHYSICAL JOURNAL, 2018, 114 (01) : 237 - 248
  • [33] Distinct Molecular Trajectories Converge to Induce Naive Pluripotency
    Stuart, Hannah T.
    Stirparo, Giuliano G.
    Lohoff, Tim
    Bates, Lawrence E.
    Kinoshita, Masaki
    Lim, Chee Y.
    Sousa, Elsa J.
    Maskalenka, Katsiaryna
    Radzisheuskaya, Aliaksandra
    Malcolm, Andrew A.
    Alves, Mariana R. P.
    Lloyd, Rebecca L.
    Nestorowa, Sonia
    Humphreys, Peter
    Mansfield, William
    Reik, Wolf
    Bertone, Paul
    Nichols, Jennifer
    Gottgens, Berthold
    Silva, Jose C. R.
    CELL STEM CELL, 2019, 25 (03) : 388 - +
  • [34] Primate embryogenesis predicts the hallmarks of human naive pluripotency
    Boroviak, Thorsten
    Nichols, Jennifer
    DEVELOPMENT, 2017, 144 (02): : 175 - 186
  • [35] Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency
    Adachi, Kenjiro
    Kopp, Wolfgang
    Wu, Guangming
    Heising, Sandra
    Greber, Boris
    Stehling, Martin
    Arauzo-Bravo, Marcos J.
    Boerno, Stefan T.
    Timmermann, Bernd
    Vingron, Martin
    Schoeler, Hans R.
    CELL STEM CELL, 2018, 23 (02) : 266 - +
  • [36] Mapping the route from naive pluripotency to lineage specification
    Kalkan, Tuezer
    Smith, Austin
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1657)
  • [37] Defining an essential transcription factor program for naive pluripotency
    Dunn, S. -J.
    Martello, G.
    Yordanov, B.
    Emmott, S.
    Smith, A. G.
    SCIENCE, 2014, 344 (6188) : 1156 - 1160
  • [38] Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency
    Kai-Li Gu
    Qiang Zhang
    Ying Yan
    Ting-Ting Li
    Fei-Fei Duan
    Jing Hao
    Xi-Wen Wang
    Ming Shi
    Da-Ren Wu
    Wen-Ting Guo
    Yangming Wang
    Cell Research, 2016, 26 : 350 - 366
  • [39] Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency
    Gu, Kai-Li
    Zhang, Qiang
    Yan, Ying
    Li, Ting-Ting
    Duan, Fei-Fei
    Hao, Jing
    Wang, Xi-Wen
    Shi, Ming
    Wu, Da-Ren
    Guo, Wen-Ting
    Wang, Yangming
    CELL RESEARCH, 2016, 26 (03) : 350 - 366
  • [40] Sox2 modulation increases naive pluripotency plasticity
    Tremble, Kathryn C.
    Stirparo, Giuliano G.
    Bates, Lawrence E.
    Maskalenka, Katsiaryna
    Stuart, Hannah T.
    Jones, Kenneth
    Andersson-Rolf, Amanda
    Radzisheuskaya, Aliaksandra
    Koo, Bon-Kyoung
    Bertone, Paul
    Silva, Jose C. R.
    ISCIENCE, 2021, 24 (03)