Time-dependent Delta-interactions for 1D Schrödinger Hamiltonians

被引:0
|
作者
Toufik Hmidi
Andrea Mantile
Francis Nier
机构
[1] Université Rennes 1,IRMAR, UMR
关键词
Point interactions; Solvable models in Quantum Mechanics; Non-autonomous Cauchy problems; 37B55; 35B65; 35B30; 35Q45;
D O I
暂无
中图分类号
学科分类号
摘要
The non autonomous Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\partial_{t}u=-\partial_{xx}^{2} u+\alpha(t) \delta_{0}u$\end{document} with ut = 0 = u0 is considered in L2 (ℝ) . The regularity assumptions for α are accurately analyzed and show that the general results for non autonomous linear evolution equations in Banach spaces are far from being optimal. In the mean time, this article shows an unexpected application of paraproduct techniques, initiated by J.M. Bony for nonlinear partial differential equations, to a classical linear problem.
引用
收藏
页码:83 / 103
页数:20
相关论文
共 50 条
  • [31] ON SELF-ADJOINTNESS OF 1 D SCHRODINGER OPERATORS WITH delta-INTERACTIONS
    Karpenko, I. I.
    Tyshkevich, D. L.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2012, 18 (04): : 360 - 372
  • [32] Uniqueness of 1D Generalized Bi-Schrödinger Flow
    Eiji Onodera
    The Journal of Geometric Analysis, 2022, 32
  • [33] Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation
    Richter, Maria
    Morales, Felipe
    Patchkovskii, Serguei
    Husakou, Anton
    OPTICS EXPRESS, 2023, 31 (24) : 39941 - 39952
  • [34] Equivalent transformation and integrability of the nonlinear Schrödinger equations with time-dependent coefficients 
    Liu, Hanze
    NUCLEAR PHYSICS B, 2023, 994
  • [35] Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation
    S. I. Vinitsky
    V. P. Gerdt
    A. A. Gusev
    M. S. Kaschiev
    V. A. Rostovtsev
    V. N. Samoylov
    T. V. Tupikova
    Y. Uwano
    Programming and Computer Software, 2006, 32 : 103 - 113
  • [36] Exact solutions to three-dimensional time-dependent Schrödinger equation
    Fakir Chand
    S. C. Mishra
    Pramana, 2007, 68 : 891 - 900
  • [37] Weyl transforms and solutions to Schrödinger equations for time-dependent Hermite operators
    Toshinao Kagawa
    M. W. Wong
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 31 - 48
  • [38] Combined method for solving of 1d nonlinear schrödinger equation
    Trofimov, Vyacheslav A
    Trykin, Evgeny M
    Lecture Notes in Electrical Engineering, 2014, 307 : 173 - 188
  • [39] Bilinear control of high frequencies for a 1D Schrödinger equation
    K. Beauchard
    C. Laurent
    Mathematics of Control, Signals, and Systems, 2017, 29
  • [40] Dunkl-Schrödinger Equation with Time-Dependent Harmonic Oscillator Potential
    Benchikha, A.
    Hamil, B.
    Lutfuoglu, B. C.
    Khantoul, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)