Time-dependent Delta-interactions for 1D Schrödinger Hamiltonians

被引:0
|
作者
Toufik Hmidi
Andrea Mantile
Francis Nier
机构
[1] Université Rennes 1,IRMAR, UMR
关键词
Point interactions; Solvable models in Quantum Mechanics; Non-autonomous Cauchy problems; 37B55; 35B65; 35B30; 35Q45;
D O I
暂无
中图分类号
学科分类号
摘要
The non autonomous Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\partial_{t}u=-\partial_{xx}^{2} u+\alpha(t) \delta_{0}u$\end{document} with ut = 0 = u0 is considered in L2 (ℝ) . The regularity assumptions for α are accurately analyzed and show that the general results for non autonomous linear evolution equations in Banach spaces are far from being optimal. In the mean time, this article shows an unexpected application of paraproduct techniques, initiated by J.M. Bony for nonlinear partial differential equations, to a classical linear problem.
引用
收藏
页码:83 / 103
页数:20
相关论文
共 50 条
  • [1] Time-dependent Delta-interactions for 1D Schrodinger Hamiltonians
    Hmidi, Toufik
    Mantile, Andrea
    Nier, Francis
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2010, 13 (01) : 83 - 103
  • [2] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [3] Adaptive Time Propagation for Time-dependent Schrödinger equations
    Auzinger W.
    Hofstätter H.
    Koch O.
    Quell M.
    International Journal of Applied and Computational Mathematics, 2021, 7 (1)
  • [4] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [5] Universal time-dependent deformations of Schrödinger geometry
    Yu Nakayama
    Journal of High Energy Physics, 2010
  • [6] Observability of a 1D Schrödinger Equation with Time-Varying Boundaries
    Mahdi Achache
    Duc-Trung Hoang
    Journal of Dynamical and Control Systems, 2023, 29 : 1077 - 1100
  • [7] Exponential fitting method for the time-dependent Schrödinger equation
    M. Rizea
    Journal of Mathematical Chemistry, 2010, 48 : 55 - 65
  • [8] Schrödinger and Dirac dynamics on time-dependent quantum graph
    D S Nikiforov
    I V Blinova
    I Y Popov
    Indian Journal of Physics, 2019, 93 : 913 - 920
  • [9] Solutions to the time-dependent schrödinger equations by inversion methods
    E. P. Velicheva
    Physics of Atomic Nuclei, 2000, 63 : 661 - 663
  • [10] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136