A Posteriori Error Estimates and a Local Refinement Strategy for a Finite Element Method to Solve Structural-Acoustic Vibration Problems

被引:0
|
作者
Ana Alonso
Anahí Dello Russo
Claudio Padra
Rodolfo Rodríguez
机构
[1] Universidad Nacional de La Plata,Departamento de Matemática, Facultad de Ciencias Exactas
[2] Centro Atómico Bariloche,Departamento de Ingeniería Matemática
[3] Universidad de Concepción,undefined
来源
关键词
fluid–structure interaction; displacement formulation; spurious-modes free FEM; adaptive mesh refinement;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.
引用
收藏
页码:25 / 59
页数:34
相关论文
共 50 条
  • [41] A posteriori error estimates for a multi-scale finite-element method
    Blal, Khallih Ahmed
    Allam, Brahim
    Mghazli, Zoubida
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [42] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [43] A posteriori error estimates in finite element solution of structure vibration problems with applications to acoustical fluid-structure analysis
    Alonso, A
    Dello Russo, A
    Vampa, V
    COMPUTATIONAL MECHANICS, 1999, 23 (03) : 231 - 239
  • [44] A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method
    Abdulle, Assyr
    Nonnenmacher, Achim
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1629 - 1656
  • [45] A posteriori error estimates for a multi-scale finite-element method
    Khallih Ahmed Blal
    Brahim Allam
    Zoubida Mghazli
    Computational and Applied Mathematics, 2021, 40
  • [46] Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM)
    Li, Wei
    Chai, Yingbin
    Lei, Ming
    Liu, G. R.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 42 : 84 - 91
  • [47] An extended finite element method approach for structural-acoustic problems involving immersed structures at arbitrary positions
    Legay, Antoine
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (04) : 376 - 399
  • [48] 3D mass-redistributed finite element method in structural-acoustic interaction problems
    Li, Eric
    He, Z. C.
    Jiang, Yong
    Li, Bing
    ACTA MECHANICA, 2016, 227 (03) : 857 - 879
  • [49] A coupled edge-/face-based smoothed finite element method for structural-acoustic problems
    He, Z. C.
    Liu, G. R.
    Zhong, Z. H.
    Cui, X. Y.
    Zhang, G. Y.
    Cheng, A. G.
    APPLIED ACOUSTICS, 2010, 71 (10) : 955 - 964
  • [50] A-POSTERIORI LOCAL ERROR-ESTIMATES FOR SOME FINITE AND BOUNDARY ELEMENT METHODS
    YU, DH
    ADVANCES IN ENGINEERING SOFTWARE, 1992, 15 (3-4) : 175 - 179