A Real Quaternion Spherical Ensemble of Random Matrices

被引:0
|
作者
Anthony Mays
机构
[1] Supélec,Chaire ASAPGONE, Alcatel Lucent Chair on Flexible Radio
来源
关键词
Random matrices;
D O I
暂无
中图分类号
学科分类号
摘要
One can identify a tripartite classification of random matrix ensembles into geometrical universality classes corresponding to the plane, the sphere and the anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the anti-sphere with truncations of unitary matrices. This paper focusses on an ensemble corresponding to the sphere: matrices of the form Y=A−1B, where A and B are independent N×N matrices with iid standard Gaussian real quaternion entries. By applying techniques similar to those used for the analogous complex and real spherical ensembles, the eigenvalue joint probability density function and correlation functions are calculated. This completes the exploration of spherical matrices using the traditional Dyson indices β=1,2,4.
引用
收藏
页码:48 / 69
页数:21
相关论文
共 50 条
  • [41] Spherical Functions Approach to Sums of Random Hermitian Matrices
    Kuijlaars, Arno B. J.
    Roman, Pablo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (04) : 1005 - 1029
  • [42] Ninety-Six Distinct Real Matrices for Representing a Quaternion Number
    Ahmed, W. E.
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [43] Quaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices
    Nagao, T
    Forrester, PJ
    NUCLEAR PHYSICS B, 1999, 563 (03) : 547 - 572
  • [44] Consimilarity of quaternion matrices and complex matrices
    Huang, LP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 331 (1-3) : 21 - 30
  • [45] Commutative Quaternion Matrices
    Hidayet Hüda Kösal
    Murat Tosun
    Advances in Applied Clifford Algebras, 2014, 24 : 769 - 779
  • [46] On the limit of the spectral distribution of large-dimensional random quaternion covariance matrices
    Yin, Yanqing
    Hu, Jiang
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2017, 6 (02)
  • [47] Commutative Quaternion Matrices
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 769 - 779
  • [48] On the eigenvalues of quaternion matrices
    Farid, F. O.
    Wang, Qing-Wen
    Zhang, Fuzhen
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (04): : 451 - 473
  • [49] SPLIT QUATERNION MATRICES
    Alagoz, Yasemin
    Oral, Kursat Hakan
    Yuce, Salim
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 223 - 232
  • [50] INTEGRAL QUATERNION MATRICES
    THOMPSON, RC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 104 : 183 - 185