Robust control of nonlinear PEMFC against uncertainty using fractional complex order control

被引:0
|
作者
Masoomeh Shahiri
Abolfazl Ranjbar
Mohammad Reza Karami
Reza Ghaderi
机构
[1] Babol University of Technology,Department of Computer and Electrical Engineering
[2] Shahid Beheshti University,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2015年 / 80卷
关键词
PEM; Fuel cell; Complex order controller; Load disturbance; Oxygen excess ratio; Robust control;
D O I
暂无
中图分类号
学科分类号
摘要
This work proposes a fractional complex order controller (FCOC) design strategy to cope with uncertainty in a proton exchange membrane fuel cell (PEMFC) model. The fuel cell dynamic behavior is inherently nonlinear and time varying. Accordingly, a locally linearization technique is used to achieve a linear interpretation in form of transfer function instead of nonlinear dynamics. When the current load is suddenly changed, the voltage and consequently the operating point are dramatically varying. Therefore, the resultant linearized model of the PEMFC changes. The discrepancy between those deviated models from the nominal plant will be regarded as system uncertainties, which must be cured by robust controller. In PEMFC dynamic, the ratio of the oxygen with respect to the air supply, i.e. the oxygen excess ratio (λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document}), is required to be adjusted. A sudden load variation causes huge variations in λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document}. Main purpose of this manuscript is to investigate the capability of the FCOC to regulate λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document} in different operating conditions. The designed controller will be gained to satisfy multi-constraint problem. The performance of the controllers is verified in the presence of uncertainty by means of the frequency criteria, i.e. the phase and the gain margins, as well as the time indices. The quality of the controller will be investigated on the original nonlinear plant. The stability and performance of the proposed controller with respect to other conventional controllers, e.g. PI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PI$$\end{document}, fractional order PI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PI$$\end{document}(FO-PI) and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_\infty $$\end{document} will be also investigated.
引用
收藏
页码:1785 / 1800
页数:15
相关论文
共 50 条
  • [31] Robust H∞ control for fractional order singular systems 0 < α < 1 with uncertainty
    Li, Bingxin
    Zhao, Xin
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2023, 44 (01): : 332 - 348
  • [32] Robust H∞ Control of Fractional-Order Switched Systems with Order 0 < α < 1 and Uncertainty
    Li, Bingxin
    Zhao, Xiangfei
    Liu, Yaowei
    Zhao, Xin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [33] Robust observer-based-α-variable model-free supertwisting fractional order sliding mode control for nonlinear PEMFC system with uncertainties and disturbance
    Mohammed, Omer Abbaker Ahmed
    Peng, Lingxi
    Hamid, Gomaa Haroun Ali
    Ishag, Ahmed Mohamed
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (09)
  • [34] Robust nonlinear flight control method against control saturation
    Sun B.
    Chen W.
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (12): : 2475 - 2483
  • [35] Fractional robust control of a nonlinear plant: Control of a nonlinear testing bench using the singular perturbation technique and the CRONE approach
    Pommier-Budinger, Valérie
    Lanusse, Patrick
    Sabatier, Jocelyn
    Oustaloup, Alain
    [J]. Journal Europeen des Systemes Automatises, 2006, 40 (02): : 211 - 231
  • [36] Robust Fractional Order Flow Control in an Oil Pipeline
    Feliu-Batlle, V.
    Gharab, Saddam
    Rivas-Perez, R.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 3278 - 3283
  • [37] Development of Robust Fractional-Order Reset Control
    Chen, Linda
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (04) : 1404 - 1417
  • [38] Robust Fractional Order PDD Control of Spacecraft Rendezvous
    Sarafnia, Niloofar
    Malekzadeh, Maryam
    Askari, Javad
    [J]. 2016 4TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2016, : 42 - 48
  • [39] Fractional Order Disturbance Observer based Robust Control
    Tamhane, Bhagyashri
    Mujumdar, Amruta
    Kurode, Shailaja
    [J]. 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 1412 - 1416
  • [40] Robust passivity and control of nonlinear systems with structural uncertainty
    Lin, W
    Shen, TL
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2837 - 2842