Robust control of nonlinear PEMFC against uncertainty using fractional complex order control

被引:0
|
作者
Masoomeh Shahiri
Abolfazl Ranjbar
Mohammad Reza Karami
Reza Ghaderi
机构
[1] Babol University of Technology,Department of Computer and Electrical Engineering
[2] Shahid Beheshti University,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2015年 / 80卷
关键词
PEM; Fuel cell; Complex order controller; Load disturbance; Oxygen excess ratio; Robust control;
D O I
暂无
中图分类号
学科分类号
摘要
This work proposes a fractional complex order controller (FCOC) design strategy to cope with uncertainty in a proton exchange membrane fuel cell (PEMFC) model. The fuel cell dynamic behavior is inherently nonlinear and time varying. Accordingly, a locally linearization technique is used to achieve a linear interpretation in form of transfer function instead of nonlinear dynamics. When the current load is suddenly changed, the voltage and consequently the operating point are dramatically varying. Therefore, the resultant linearized model of the PEMFC changes. The discrepancy between those deviated models from the nominal plant will be regarded as system uncertainties, which must be cured by robust controller. In PEMFC dynamic, the ratio of the oxygen with respect to the air supply, i.e. the oxygen excess ratio (λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document}), is required to be adjusted. A sudden load variation causes huge variations in λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document}. Main purpose of this manuscript is to investigate the capability of the FCOC to regulate λo2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{{\mathrm{o}_{2} }}$$\end{document} in different operating conditions. The designed controller will be gained to satisfy multi-constraint problem. The performance of the controllers is verified in the presence of uncertainty by means of the frequency criteria, i.e. the phase and the gain margins, as well as the time indices. The quality of the controller will be investigated on the original nonlinear plant. The stability and performance of the proposed controller with respect to other conventional controllers, e.g. PI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PI$$\end{document}, fractional order PI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PI$$\end{document}(FO-PI) and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_\infty $$\end{document} will be also investigated.
引用
收藏
页码:1785 / 1800
页数:15
相关论文
共 50 条
  • [1] Robust control of nonlinear PEMFC against uncertainty using fractional complex order control
    Shahiri, Masoomeh
    Ranjbar, Abolfazl
    Karami, Mohammad Reza
    Ghaderi, Reza
    [J]. NONLINEAR DYNAMICS, 2015, 80 (04) : 1785 - 1800
  • [2] A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics
    Vishal Goyal
    Puneet Mishra
    Vinay Kumar Deolia
    [J]. Arabian Journal for Science and Engineering, 2019, 44 : 2597 - 2611
  • [3] A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics
    Goyal, Vishal
    Mishra, Puneet
    Deolia, Vinay Kumar
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (03) : 2597 - 2611
  • [4] Robust Control of a Class of Fractional Order Plants in the Presence of Pole Uncertainty
    Basiri, Mohammad Hossein
    Tavazoei, Mohammad Saleh
    [J]. 26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 881 - 886
  • [5] Qualitative analytical results of complex order nonlinear fractional differential equations with robust control scheme
    Boutiara, Abdelatif
    Alzabut, Jehad
    Khan, Hasib
    Ahmed, Saim
    Azar, Ahmad Taher
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 20692 - 20720
  • [6] Robust stabilization and control using fractional order integrator
    Ben Hmed, Amina
    Amairi, Messaoud
    Aoun, Mohamed
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (10) : 1559 - 1576
  • [7] Adaptive Control and Synchronization for a Class of Nonlinear Fractional Order Systems with Uncertainty
    雷华静
    寇春海
    蔡锐阳
    何彬彬
    [J]. Journal of Donghua University(English Edition), 2019, 36 (04) : 405 - 412
  • [8] Robust control of fractional-order nonlinear systems with parameters perturbation
    Ma, Jianguo
    Sun, Yeguo
    Liu, Heng
    [J]. Ma, Jianguo, 1600, ICIC Express Letters Office (05): : 1579 - 1585
  • [9] Robust Motion Control of a Soft Robotic System Using Fractional Order Control
    Deutschmann, Bastian
    Ott, Christian
    Monje, Concepcion A.
    Balaguer, Carlos
    [J]. ADVANCES IN SERVICE AND INDUSTRIAL ROBOTICS, 2018, 49 : 147 - 155
  • [10] Robust model predictive control for fractional-order descriptor systems with uncertainty
    Adnène Arbi
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 173 - 189