Model oblique derivative problem for the heat equation in the Zygmund space H1

被引:0
|
作者
A. N. Konenkov
机构
[1] Ryazan State University,
来源
Doklady Mathematics | 2016年 / 93卷
关键词
Parabolic Equation; Heat Equation; Compatibility Condition; Suitable Assumption; Imbed Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The third boundary value problem and the oblique derivative problem for the heat equation are considered in model formulations. A difference compatibility condition is introduced for the initial and boundary functions. Under suitable assumptions made about the problem data, the solutions are shown to belong to the parabolic Zygmund space H1, which is the analogue of the parabolic Hölder space for an integer smoothness exponent.
引用
收藏
页码:20 / 22
页数:2
相关论文
共 50 条
  • [41] A nonlinear oblique derivative boundary value problem for the heat equation Part 2: Singular self-similar solutions
    Mehats, F
    Roquejoffre, JM
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (06): : 691 - 724
  • [42] Problem with Oblique Derivative and Mixed Boundary Conditions on the Diameter for the Helmholtz Equation in a Semidisk
    Kapustin, N.
    Moiseev, E.
    Polosin, A.
    Popivanov, N.
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [43] A priori estimates and weak solutions for the derivative nonlinear Schrodinger equation on torus below H1/2
    Takaoka, Hideo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) : 818 - 859
  • [44] UNIFORM RATIONAL APPROXIMATION OF FUNCTIONS WITH 1ST DERIVATIVE IN THE REAL HARDY SPACE RE H1
    MOSKONA, ES
    PETRUSHEY, PP
    CONSTRUCTIVE APPROXIMATION, 1991, 7 (01) : 69 - 103
  • [45] A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space
    Ben Lambert
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 115 - 120
  • [46] A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space
    Lambert, Ben
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (01): : 115 - 120
  • [47] HARDY SPACE H1 ON MANIFOLDS AND SUBMANIFOLDS
    STRICHARTZ, RS
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1972, 24 (05): : 915 - 925
  • [48] A note on characterization of Hardy space H1
    Wang, SL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04): : 448 - 455
  • [49] A note on characterization of Hardy space H1
    Silei Wang
    Science in China Series A: Mathematics, 2005, 48 : 448 - 455
  • [50] The Local Atomic Hardy Space h1 (μ)
    Yang, Dachun
    Yang, Dongyong
    Hu, Guoen
    HARDY SPACE H1 WITH NON-DOUBLING MEASURES AND THEIR APPLICATIONS, 2013, 2084 : 137 - 214