Generalized Vector Complementarity Problems with Moving Cones

被引:0
|
作者
Lu-Chuan Ceng
Yen-Cherng Lin
机构
[1] Shanghai Normal University,Department of Mathematics
[2] China Medical University,Department of Occupational Safety and Health
来源
Journal of Inequalities and Applications | / 2009卷
关键词
Banach Space; Identity Mapping; Minimal Point; Generalize Vector; Convex Cone;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and discuss a class of generalized vector complementarity problems with moving cones. We discuss the existence results for the generalized vector complementarity problem under inclusive type condition. We obtain equivalence results between the generalized vector complementarity problem, the generalized vector variational inequality problem, and other related problems. The theorems presented here improve, extend, and develop some earlier and very recent results in the literature.
引用
收藏
相关论文
共 50 条
  • [21] Some generalized vector variational inequalities and complementarity problems for multivalued mappings
    Huang, NJ
    Gao, CJ
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1003 - 1010
  • [22] GENERALIZED MIXED QUASI-COMPLEMENTARITY PROBLEMS IN TOPOLOGICAL VECTOR SPACES
    Frajzadeh, Ali P.
    Noor, Muhammad Aslam
    ANZIAM JOURNAL, 2008, 49 (04): : 525 - 531
  • [23] Implicit complementarity problems on isotone projection cones
    Abbas, M.
    Nemeth, S. Z.
    OPTIMIZATION, 2012, 61 (06) : 765 - 778
  • [24] Extended Lorentz cones and mixed complementarity problems
    S. Z. Németh
    G. Zhang
    Journal of Global Optimization, 2015, 62 : 443 - 457
  • [25] Extended Lorentz cones and mixed complementarity problems
    Nemeth, S. Z.
    Zhang, G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (03) : 443 - 457
  • [26] Survey on Vector Complementarity Problems
    F. Giannessi
    G. Mastroeni
    X. Q. Yang
    Journal of Global Optimization, 2012, 53 : 53 - 67
  • [27] Survey on Vector Complementarity Problems
    Giannessi, F.
    Mastroeni, G.
    Yang, X. Q.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (01) : 53 - 67
  • [28] Generalized linear complementarity problems
    Math Oper Res, 2 (441):
  • [29] Newton-type interior-point methods for solving generalized complementarity problems in polyhedral cones
    Andreani, R.
    Santos, S. A.
    Shirabayashi, W. V. I.
    OPTIMIZATION, 2011, 60 (8-9) : 1171 - 1191
  • [30] COMPLEMENTARITY-PROBLEMS OVER LOCALLY COMPACT CONES
    GOWDA, MS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) : 836 - 841