Stainless steel weld metal enhanced with carbon nanotubes

被引:0
|
作者
D. J. A. Borges
D. C. S. Cardoso
E. M. Braga
A. A. F. Castro
M. A. L. Dos Reis
C. R. L. Loayza
机构
[1] Universidade Federal do Pará,Programa de Pós
[2] Universidade Federal do Pará,Graduação em Engenharia Mecânica (PPGEM/UFPA)
[3] Universidade Federal do Pará,Programa de Pós
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims to establish the most indicated route to manufacture a nanostructured powder composed of 5 wt% Multi-walled Carbon Nanotubes and 304LSS powder. Four specimens were prepared using Mechanical Alloying and Chemical Treatment (CT) with Hydrogen Peroxide (H2O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$\end{document}) as the main processes. A thermal treatment post-processing was used in half of the samples to remove the remaining amorphous carbon and to evaluate its effects. Regarding the powder analysis, attachment, amorphous carbon degree, crystallinity, and doping of the CNT throughout the metal matrix were investigated. The nanostructured powders were then inserted as a core in a 304LSS tubular rod to perform the arc welding process. The CT route eliminated the amorphous carbon and generated more refiner grains, which provided a cross-section hardness gain of more than 40% regarding the 304LSS joint. In summary, the CT route, combined with the GTAW process, provided a new method for nanocomposite manufacturing by combining shorter preparation steps, obtaining an improvement in the microstructural and hardness performance.
引用
收藏
相关论文
共 50 条
  • [41] Precipitation behavior of σ phase for reheated duplex stainless steel weld metal
    Nakade, K.
    Ohe, K.
    Kuroda, T.
    Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2001, 19 (01): : 92 - 99
  • [42] Effect of PWHT on Supermartensitic Stainless Steel All Weld Metal Toughness
    Zappa, S.
    Svoboda, H. G.
    Ramini de Rissone, N. M.
    Surian, E. S.
    de Vedia, L. A.
    TRENDS IN WELDING RESEARCH, 2009, : 617 - +
  • [43] HYDROGEN EMBRITTLEMENT IN TIG WELD METAL OF FERRITIC STAINLESS-STEEL
    INOUE, S
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1986, 72 (13): : 1551 - 1551
  • [44] WELDING VARIABLES AND MICROFISSURING IN AUSTENITIC STAINLESS-STEEL WELD METAL
    GOOCH, TG
    HONEYCOMBE, J
    WELDING JOURNAL, 1980, 59 (08) : S233 - S241
  • [45] Evaluation of weld metal hot cracking susceptibility in superaustenitic stainless steel
    Kook-soo Bang
    Seong-hyun Pak
    Sang-kon Ahn
    Metals and Materials International, 2013, 19 : 1267 - 1273
  • [46] Development of the model for simulating weld metal solidification cracking in stainless steel
    魏艳红
    刘仁培
    董祖珏
    China Welding, 1999, (02) : 3 - 5
  • [47] WELDING VARIABLES AND MICROFISSURING IN AUSTENITIC STAINLESS STEEL WELD METAL.
    Gooch, T.G.
    Honeycombe, J.
    Welding Journal (Miami, Fla), 1980, 59 (08):
  • [48] Development of the model for simulating weld metal solidification cracking in stainless steel
    Wei, Yanhong
    Liu, Renpei
    Dong, Zujue
    China Welding (English Edition), 1999, 8 (02): : 135 - 140
  • [49] Creep strengthening of type 316 stainless steel weld metal by nitrogen
    Mathew, MD
    Latha, S
    Rao, KBS
    Mannan, SL
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2005, 58 (2-3): : 269 - 273
  • [50] FATIGUE AND CREEP CRACK PROPAGATION IN STAINLESS STEEL WELD METAL.
    Shahinian, P.
    Welding Journal (Miami, Fla), 1978, 57 (03):