Identifying differentially expressed (DE) genes across conditions or treatments is a typical problem in microarray experiments. In time course microarray experiments (under two or more conditions/treatments), it is sometimes of interest to identify two classes of DE genes: those with no time-condition interactions (called parallel DE genes, or PDE), and those with time-condition interactions (nonparallel DE genes, NPDE). Although many methods have been proposed for identifying DE genes in time course experiments, methods for discerning NPDE genes from the general DE genes are still lacking. We propose a functional ANOVA mixed-effect model to model time course gene expression observations. The fixed effect of (the mean curve) of the model decomposes bivariate functions of time and treatments (or experimental conditions) as in the classic ANOVA method and provides the associated notions of main effects and interactions. Random effects capture time-dependent correlation structures. In this model, identifying NPDE genes is equivalent to testing the significance of the time-condition interaction, for which an approximate F-test is suggested. We examined the performance of the proposed method on simulated datasets in comparison with some existing methods, and applied the method to a study of human reaction to the endotoxin stimulation, as well as to a cell cycle expression data set.