Non-Relativistic Twistor Theory and Newton–Cartan Geometry

被引:0
|
作者
Maciej Dunajski
James Gundry
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
关键词
Vector Bundle; Line Bundle; Minkowski Space; Normal Bundle; Holomorphic Vector Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a non–relativistic twistor theory, in which Newton–Cartan structures of Newtonian gravity correspond to complex three–manifolds with a four–parameter family of rational curves with normal bundle O⊕O(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O} \oplus \mathcal {O}(2)}$$\end{document}. We show that the Newton–Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton–Cartan connections can nevertheless be reconstructed from Merkulov’s generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non–trivial on twistor lines. The resulting geometries agree with non–relativistic limits of anti-self-dual gravitational instantons.
引用
收藏
页码:1043 / 1074
页数:31
相关论文
共 50 条
  • [41] Observables and correlators in non-relativistic ABJM theory
    Nakayama, Yu
    Rey, Soo-Jong
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (08):
  • [42] Foundations of quantum mechanics: non-relativistic theory
    Olavo, LSF
    PHYSICA A, 1999, 262 (1-2): : 197 - 214
  • [43] Non-relativistic Quantum Theory at Finite Temperature
    Wu, Xiang-Yao
    Zhang, Si-Qi
    Zhang, Bo-Jun
    Liu, Xiao-Jing
    Wang, Jing
    Li, Hong
    Ba, Nou
    Xiao, Li
    Wu, Yi-Heng
    Li, Jing-Wu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (08) : 2599 - 2606
  • [44] Conformal invariance for non-relativistic field theory
    Mehen, T
    Stewart, IW
    Wise, MB
    PHYSICS LETTERS B, 2000, 474 (1-2) : 145 - 152
  • [45] Effective field theory for non-relativistic hydrodynamics
    Akash Jain
    Journal of High Energy Physics, 2020
  • [46] Relativistic and Newton-Cartan particle in de Broglie-Bohm theory
    Kluson, Josef
    MODERN PHYSICS LETTERS A, 2019, 34 (04)
  • [47] Emergent geometry, torsion and anomalies in non-relativistic topological matter
    Nissinen, Jaakko
    AVENUES OF QUANTUM FIELD THEORY IN CURVED SPACETIME, AQFTCS 2022, 2023, 2531
  • [48] ON NEWTON-CARTAN-THEORY
    LEIHKAUF, H
    ANNALEN DER PHYSIK, 1989, 46 (04) : 312 - 314
  • [49] Non-relativistic conformal field theory in the presence of boundary
    Gupta, Rajesh Kumar
    Singh, Ramanpreet
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [50] Supersymmetric non-relativistic geometries in M-theory
    Ooguri, Hirosi
    Park, Chang-Soon
    NUCLEAR PHYSICS B, 2010, 824 (1-2) : 136 - 153